tìm số nguyên n để
a)3n chia hết cho (-2)
b)n+5 chia hết cho 5
c)6 chia hết cho n
tìm số nguyên n biết
a) ( n-6) chia hết cho ( n-1)
b) ( 3n+2) chia hết cho ( n-1)
c) ( 3n+24) chia hết cho ( n-4)
d) (n2 + 5) chia hết cho ( n+1)
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
Tìm số nguyên n
a) (n-6)chia hết cho(n-1)
b) (3n+2)chia hết cho(n-1)
c) (3n+24) chia hết cho(n-1)
d) (n^2+5) chia hết cho(n+1)
Giúp mình vs nha
a) n - 6 chia hết cho n-1
n - 1 - 5 chia hết cho n - 1
n - 1 thuộc U(-5)
Rồi bạn liệt kê ra
a) n -6 chia hết cho n-1
n-1-5 chia hết cho n -1
n-1 chia hết cho n-1
=> n-1 € Ư (5)={1;5;-1;-5}
+ n-1 =1=>n=2
+n-1=5=>n=6
+n-1=-1=>n=0
+n+1=-5=>n=-4
=>n={2;6;0;-4}
Tìm số nguyên n, để:
a) 3n chia hết cho (-2)
b) n + 5 chia hết cho 5
c) 6 chia hết cho n
d) 5 chia hết cho n + 1
Giúp mình với!
b) n+5 chia hết cho 5
=> n chia hết cho 5 ; 5 chia hết cho 5
=> n thuộc Ư(5)={-1,-5,1,5}
c) 6 chia hết cho n
=> n thuộc Ư(6)={-1,-2,-3,6,1,2,3,6}
d) 5 chia hết n+1
=> n+1 thuộc Ư(5)={-1,-5,1,5}
=> n={-2,-6,0,4}
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1
1) Tìm số nguyên n sao cho:
a) (2n+1) chia hết cho (6-n)
b) 3n chia hết cho (n-1)
c) (3n+5) chia hết cho (2n+1)
B, 3n chia hết cho n-1
3.(n-1)+3 chia hết cho n-1
3.(n-1)chia hết cho n-1 suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 mà ước của 3 là 1,3,-1,-3
n-1=1, n=2
n-1=3, n=4
n-1=-1, n=0
n-1 =-3, n=-2
ĐÚNG THÌ TICK CHO MÌNH NHÉ, CÂU C LÀM TƯƠNG TỰ
tại sao nguyễn viết ngọc hà phải xin lỗi chứ bn ko bt thì bn ko trả lời thì có gì dau mầ phải xin lỗi
Tìm số nguyên n sao cho :
a)3n+2 chia hết cho n-1
b)3n+24 chia hết cho n-4
c)3n+5 chia hết cho n+1
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
a) 3n + 2 chia hết cho n - 1
⇒⇒ 3n - 3 + 5 chia hết cho n - 1
⇒⇒ 3(n - 1) + 5 chia hết cho n - 1
⇒⇒ 5 chia hết cho n - 1
⇒⇒ n - 1 ∈∈ Ư(5) = {-1; 1; -5; 5}
⇒⇒ n ∈∈ {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
⇒⇒ 3n - 12 + 36 chia hết cho n - 4
⇒⇒ 3(n - 4) + 36 chia hết cho n - 4
⇒⇒ 36 chia hết cho n - 4
⇒⇒ n - 4 ∈∈ Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
⇒⇒ n ∈∈ {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
⇒ 3n + 3 + 2 chia hết cho n + 1
⇒ 3(n + 1) + 2 chia hết cho n + 1
⇒ 2 chia hết cho n + 1
⇒ n + 1 ∈ Ư(2) = {-1; 1; -2; 2}
⇒ n ∈ {0; 2; -1; 3}
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
Tìm số nguyên n thuộc z để
6n+3 chia hết cho 3n+6
n+4 chia hết cho n+1
2n+9 chia hết cho n-3
5n-8 chia hết cho 4-n
3n-5 chia hết cho n+1
a) Ta có : 3n+6 chia hết cho 3n+6
=>2(3n+6) chia hết cho 3n+6
=> 6n+3-6n+12 chia hết cho 3n+6
-9 chia hết cho 3n+6
=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}
3n={-5,-7,-3,-9,3,-15}
n={-1,-3,1,-5}
a) n không có giá trị
b) n = 2
c) n= 6 ;8
d)n khong có giá trị
e) n= 3
tìm số nguyên n biết n-4 chia hết cho n-1
Tìm số nguyên n biết a)3n-1 chia hết cho n+2
b)n^2-2 chia hết cho n+5
\(a,\Rightarrow3\left(n+2\right)-7⋮\left(n+2\right)\\ \Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-9;-3;-1;5\right\}\\ b,\Rightarrow\left(n^2+5n-5n-25+23\right)⋮\left(n+5\right)\\ \Rightarrow\left[n\left(n+5\right)-5\left(n+5\right)+23\right]⋮\left(n+5\right)\\ \Rightarrow n+5\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\\ \Rightarrow n\in\left\{-28;-6;-4;18\right\}\)
Lời giải:
a.
$3n-1\vdots n+2$
$\Rightarrow 3(n+2)-7\vdots n+2$
$\Rightarrow 7\vdots n+2$
$\Rightarrow n+2\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{-1; -3; 5; -9\right\}$
b.
$n^2-2\vdots n+5$
$\Rightarrow n(n+5)-5(n+5)+23\vdots n+5$
$\Rightarrow (n+5)(n-5)+23\vdots n+5$
$\Rightarrow 23\vdots n+5$
$\Rightarrow n+5\in\left\{\pm 1;\pm 23\right\}$
$\Rightarrow n\in\left\{-4; -6; 18; -28\right\}$