Cho ba số x, y, z thỏa mãn: xyz<0 và x+y+z=-3
Tìm GTLN của biểu thức P=x4+y4+z4/xyz
tìm ba số nguyên dương x,y,z thỏa mãn x+y+z+xy+yz+zx chia hết cho xyz
Tìm ba số x,y,z nguyên thỏa mãn : x + y + z = xyz
X,Y,Z là 1,2,3 hoặc -1;-2;3 hoặc 0;0;0
Cho ba số x,y,z thỏa mãn x+2/2=y+3/3=z+4/4 và 2x+y+z=11. Khi đó xyz bằng
Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
Cho ba số x , y , z thỏa mãn xyz = 2017
Tính tổng D = 2017x / xy + 2017x + 2017+ y/yz+y+2017+z/zx+z+1
thay xyz=2017, ta có:
\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{Bài làm }\)
\(\text{ Gọi xyz = 2017}\)
\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{# Chúc bạn học tốt #}\)
@bn Thần chết:
đề bài cho xyz=2017 rồi nên ko được gọi nữa nhé
Cho ba số dương x, y, z thỏa mãn: (x+y+z)3+x2+y2+z2+4=29xyz. Tìm gtnn của xyz
đáp án là 8 khi x=y=z=2 nha. có đ/á nhưng ko bik làm
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a^x=bc,b^y=ca,c^z=ab.Chứng minh rằng x+y+z+2=xyz
cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a x bc,b y ca,c z ab.Chứng minh rằng x y z 2 xyz