Tìm GTLN,GTNN của biểu thức \(A=\frac{x^2+4\sqrt{2}x+3}{x^2+1}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
a) Tìm GTNN của biểu thức: A= \(\frac{1}{2}\)+\(\sqrt{x}\)
b) Tìm GTLN của biểu thức: B= -2|0,(3)x + 4| +\(1\frac{2}{3}\)
Tìm GTNN hoặc GTLN của biểu thức:
a) \(\frac{2\sqrt{x}+15}{\sqrt{x}+4}\)
b) \(\frac{x^2+2}{2x^2+3}\)
Giúp mình nhanh nhé, mai cô kt r
1) Tìm GTNN của biểu thức \(A=x^2+4y^2+2xy-4x+2y+2015\)
2) Tìm GTLN, GTNN của \(B=\sqrt{x-1}+\sqrt{5-x}\)
3) Tìm GTLN của biểu thức \(M=\frac{2012}{x^2-4x+2016}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1 Tìm GTNN của biểu thức
C=\(\frac{x+9}{10\sqrt{x}}\)
2 Tìm GTLN của biểu thức E= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
3 Tìm x để \(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
4 Rút họn P
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
3/ Điều kiện xác định bạn tự làm nhé
\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
\(\Leftrightarrow8x+67\sqrt{x}+1=0\)
Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :
\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)
1. Áp dụng bđt Cauchy và bđt quen thuộc \(4ab\le\left(a+b\right)^2\) ta có:
\(D=\frac{ab}{a+b}+\frac{a+b}{4ab}+\frac{3\left(a+b\right)}{4ab}\) \(\ge2\sqrt{\frac{ab}{a+b}\cdot\frac{a+b}{4ab}}+\frac{6}{\left(a+b\right)^2}\)
\(\Rightarrow D\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" \(\Leftrightarrow a=b=1\)