2xy - 4 + 4x - y = 0
2x^2-2xy-4x+y^2+4=0
\(2x^2-2xy-4x+y^2+4=0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-4x+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2=0\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0,\forall x;y\\\left(x-2\right)^2\ge0,\forall x\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
a)2x-xy+4x-2y=4
b)2x2-2xy-5x-y+19=0
c)x2y+2xy+y-81=0
Tìm giá trị nhiệm nguyên
Tìm nhiệm nguyên mình mới vào đội tuyển toán 7 mình không biết
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{y}}\) . Tính A biết : \(2x^2+y^2-4x-2xy+4=0\)
Giải hệ bằng phương pháp phân tích đa thức thành nhân tử
a) \(\left\{{}\begin{matrix}xy+x-2=0\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
\(\hept{\begin{cases}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{cases}}\)
Tìm x , y :
a) 2x^2 + 2y^2 - 2xy + 6x + 6y + 18 = 0
b) 10x^2 + y^2 - 6xy + 4x + 4 = 0
Tìm x , y :
a) 2x^2 + 2y^2 - 2xy + 6x + 6y + 18 = 0
b) 10x^2 + y^2 - 6xy + 4x + 4 = 0
Tìm x biết:
a,x^2+2y^2-2xy-2x-2xy+5=0
b,x^2+5y^2-2xy+4x-8y+5
c,y^2+2y+4^x-2^x+1+2=0
Help me please~~~~~~~~~~~~~~~~~
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
Tìm x a.x^3-9x =0 b.x^2+4x+4-y^2 c. x^2-2xy+7x-14y
a ) x3 - 9x=0
<=> x (x2 - 3 )= 0
<=> x(x+3)(x-3)
<=> x=0
hoặc x=0-3=-3
hoặc x=0+3=3