tìm các số nguyên dương a va b
\(2.3^a+2.3^b=3^{a+b}\)
tìm số nguyên dương a và b biết \(2.3^a+2.3^b=3^{a+b}\)
2.3a + 2.3b = 3a+b
=> 2(3a + 3b) = 3a + b
Vì vế trái luôn là số chẵn.(có chứa ts 2)
Mà vế phải là số lẻ.
=> Ko có a,b thỏa mãn
tính tổng
A=1.2+2.3+3.4+....+98.99
tìm số nguyên xbiết; 2<GTTĐ x+3<3
tìm giá trị x nguyên để B nguyên ; B= x+3/2x+1
cho 4 số nguyên dương a,b,c,d trong đó b là TBC của a và C đồng thời 1/c=1/2(1/b+1/d)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
1) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương là
A. 2.\(3^{19}\) B.\(2.3^{20}\) C.\(3^{20}\) D.\(2.3^{21}\)
2) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=3^n\) số hạng \(u_{n+1}\) là
A. \(3^n+1\) B.\(3^n+3\) C.\(3^n.3\) D.\(3\left(n+1\right)\)
3) cho dãy số \(\left(u_n\right)\) với \(u_n=4^n+2^n\) ba số hạng đầu tiên của dãy là
4) cho dãy số \(\left(u_n\right)\) n ϵ N* biết \(u_n=\dfrac{1}{n+1}\) ba số hạng đầu tiên của dãy số đó là
5) cho dãy số có các số hạng đầu tiên là 5,10,15,20,25,.. số hạng tổng quát của dãy số là
5: \(u_n=5n\left(n\in N\right)\)
4: Ba số hạng đầu tiên là 1/2;1/3;1/4
3: Ba số hạng đầu tiên là 6;20;72
2C
1B
giả sử a= 2.32.73. tìm hai số b thỏa mãn UCLN(a,b)= 2.32.7
có sai đề ko bạn, nếu sai bạn sửa lại đề đi
Cho A=1.2+2.3+3.4+4.5+............+2017.2018 va B=2018 mu3/3 So sanh A va B
cho bài kham khảo nè :
A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3};B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)
Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B
thank nha
A=1.2+2.3+3.4+...+2017.2018
3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3
3A=1.2.3+2.3.(4−1)+3.4.(5−2)+...+2017.2018.(2019−2016)
3A=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2017.2018.2019−2016.2017.2018
⇒3A=2017.2018.2019
⇒A=2017.2018.20193
A=2017.2018.20193;B=201833=2018.2018.20183
A=2739315938;B=2739316611
⇒A<B
\(A=1.2+2.3+3.4+4.5+............+2017.2018\)
\(3A = 1.2.3 + 2.3.4 +..............+ 2017.1018.3\)
\(3A = 1.2.3 + 2.3.(4-1) + .............. + 2017.2018.(2019-2016)\)
\(3A = 1.2.3 + 2.3.4 - 1.2.3 + ............. + 2017.2018.2019 - 2016.2017.2018\)
\(3A = 2017.2018.2019\)
\(A = \frac{2017.2018.2019}{3}\)
\(B =\frac {2018^3}{3}\)
đến đây ko bt lm
Tìm các số nguyên n thỏa
a) a(2n+6) . (3n—9)=1
b) 1/3.3n=7.3.93—2.3n
Cho A=1.2+2.3+3.4+4.5+............+2017.2018 va B=2018 mu3/3 So sanh A va B
A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3}\); \(B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)
Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B
Bui The Hao lam dung roi
mk cung dang can bai nay
Thanks vi da dang honganh
BT1: So sánh hai phân số a-1/a và b+1/b với a và b là các số nguyên cùng dấu
BT2 : Tính A= 2x/3y + 3y/4z + 4z/5t + 5t/2x với các phân số đã liệt kê bằng nhau
BT3 : Cho A = 1/2.3/4. ... .99/100 Chứng minh 1/15 < A < 1/10
BT4 : Tìm các số nguyên dương a b c d thỏa 2 bé hơn hoặc bằng a bé hơn hoặc bằng b bé hơn hoặc bằng c bé hơn hoặc bằng d và (1/2-1/a)+(1/2-1/b)+(1/2-1/c) = 1/2-1/d
BT5 : Tìm số nguyên T lớn nhất không vượt quá 2/ 1/2016+3/2017+5/2018+...+43/2039