Giải hệ PT: \(\hept{\begin{cases}xy+45y=4x^2\\y^2+95y+6=7x^2+5x\end{cases}}\)
Giải hệ PT: \(\left\{{}\begin{matrix}xy+45y=4x^2\\y^2+95y+6=7x^2+5x\end{matrix}\right.\)
Lấy (1) nhân 2 rồi trừ cho (2) ta được:
\(2xy+90y^2-y^2-95y-6=x^2-5x\)
\(\Leftrightarrow\left(x-y\right)^2-5\left(x-y\right)+6=0\)
\(\Leftrightarrow\left(x-y-2\right)\left(x-y-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=2\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x=y+3\end{matrix}\right.\) sau đó thay vào (1)
a) giải hệ pt: \(\hept{\begin{cases}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
b) giải hệ pt: \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\)
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
giải hệ pt
\(\hept{\begin{cases}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}-\sqrt{y^2+1}=4\end{cases}}\)
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
Giải hệ phương trình sau:
\(\hept{\begin{cases}2x^3+xy+y=4x^4\\5x^4-4x^6=y^2\end{cases}}\)
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
giải hệ pt \(\hept{\begin{cases}x^3-xy^2\\4x^4+y^4=4x+y\end{cases}+y^3=1}\)
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
Giải hệ pt: \(\hept{\begin{cases}x+y+xy=2+3.\sqrt{2}\\x^2+y^2=6\end{cases}}\)
Đặt (x + y) = a; xy = b thì hệ thành
a + b = \(2+3\sqrt{2}\)và a2 - 2b = 6
Giờ rút b theo a rồi thế vô phương trình còn lại. Giải phương trình bậc 2 thôi.
GIẢI HỆ PT: 1) \(\hept{\begin{cases}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{cases}}\)
2) \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\-x^2+2y=-3\end{cases}}\)
c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x4 + 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x