Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngân
Xem chi tiết
22.10A1.5. Trần Thị Kim...
Xem chi tiết
Xuan Mai
23 tháng 3 2022 lúc 23:57

1.      What size shoes do you take?

2.      What newspaper do you read?

3.      What color are your eyes?

4.      What time did you arrive this morning?

5.      What kind of film do you like?

6.      How tall is your teacher?

7.      How far is it from your house to the office?

8.      How much did you pay for your new shirt?

9.      How often do you take an English test in class?

10.  How long have you been studying English?

LUFFY WANO
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2023 lúc 19:35

loading...

Kim Anhh
Xem chi tiết
Hưởng T.
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:15

Bài 1: 

1) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\dfrac{a-1}{\sqrt{a}}\)

2) Thay \(a=3-2\sqrt{2}\) vào M, ta được:

\(M=\dfrac{3-2\sqrt{2}-1}{\sqrt{2}-1}=\dfrac{-2\sqrt{2}+2}{\sqrt{2}-1}\)

\(=\dfrac{-2\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-2\)

trần thanh thanh
Xem chi tiết
Quân Trương
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 5 2021 lúc 17:12

Lấy \(2.\left(2\right)-\left(1\right)\) ta được:

\(2b+4a+6-\left(a-1-2b\right)=0\)

\(\Leftrightarrow4b+3a+7=0\Rightarrow b=\dfrac{-3a-7}{4}\)

Thế vào (2):

\(\sqrt{a^2+\left(\dfrac{-3a-7}{4}\right)^2}=\dfrac{-3a-7}{4}+2a+3\)

\(\Leftrightarrow\sqrt{25a^2+42a+49}=5a+5\) (\(a\ge-1\))

\(\Leftrightarrow25a^2+42a+49=25a^2+50a+25\)

\(\Rightarrow a=...\Rightarrow b=...\)

Trân Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 17:13

undefined

Nguyễn Việt Lâm
18 tháng 8 2021 lúc 17:49

9.

Gọi H là trung điểm AB \(\Rightarrow A'H\perp\left(ABCD\right)\Rightarrow\widehat{A'CH}=45^0\)

\(CH=\sqrt{BH^2+BC^2}=\sqrt{\left(\dfrac{2a}{2}\right)^2+a^2}=a\sqrt{2}\)

\(\Rightarrow A'H=CH.tan45^0=a\sqrt{2}\)

\(V=A'H.AB.AD=2a^3\sqrt{2}\)

b.

Ta có: \(DD'||AA'\Rightarrow DD'||\left(AA'C\right)\)

\(\Rightarrow d\left(DD';A'C\right)=d\left(DD';\left(AA'C\right)\right)=d\left(D;\left(AA'C\right)\right)\)

Trong mp (ABCD), nối DH cắt AC tại E \(\Rightarrow DH\cap\left(AA'C\right)=E\)

Áp dụng định lý Talet: \(\dfrac{EH}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow DE=2EH\)

\(\Rightarrow d\left(D;\left(AA'C\right)\right)=2d\left(H;\left(AA'C\right)\right)\)

Kẻ \(HF\perp AC\Rightarrow AC\perp\left(AHF\right)\)

Trong tam giác vuông AHF, kẻ \(HK\perp A'F\Rightarrow HK\perp\left(AA'C\right)\Rightarrow HK=d\left(H;\left(AA'C\right)\right)\)

Ta có: \(HF=AH.sin\widehat{BAC}=\dfrac{AH.BC}{AC}=\dfrac{AH.BC}{\sqrt{AB^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{HK^2}=\dfrac{1}{HF^2}+\dfrac{1}{A'H^2}=\dfrac{11}{2a^2}\Rightarrow HK=\dfrac{a\sqrt{22}}{11}\)

\(\Rightarrow d\left(DD';A'C\right)=2HK=\dfrac{2a\sqrt{22}}{11}\)

LUFFY WANO
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2023 lúc 18:18

13:

a vuông góc HK

b vuông góc HK

Do đó: a//b

12: góc x'AB=góc ABy

mà hai góc này là hai góc ở vị trí so le trong

nên xx'//y'y