Vì sao phương trình \(ax^2+bx+c=0\) có các hệ số a và c trái dấu thì phương trình có nghiệm
Vì sao khi phương trình a x 2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm? Áp dụng: Không tính ∆ , hãy giải thích vì sao mỗi phương trình sau có nghiệm:
3 2 x 2 + 3 - 2 x + 2 - 3 = 0
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
Phương trình 3 2 x 2 + 3 - 2 x + 2 - 3 = 0 có:
a = 3 2 , c = 2 - 3 nên ac < 0 (vì 2 < 3 )
Vậy phương trình có 2 nghiệm phân biệt.
Vì sao khi phương trình a x 2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm? Áp dụng: Không tính ∆ , hãy giải thích vì sao mỗi phương trình sau có nghiệm:
2010 x 2 + 5x - m 2 = 0
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
2010 x 2 + 5x - m 2 = 0 (1)
*Với m = 0 thì (1) ⇔ 2010 x 2 + 5x = 0: phương trình có 2 nghiệm.
*Với m ≠ 0 ta có: m 2 > 0, suy ra: - m 2 < 0
Vì a = 2010 > 0, c = - m 2 < 0 nên ac < 0
Vậy phương trình (1) có 2 nghiệm phân biệt.
Vì sao khi phương trình a x 2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm? Áp dụng: Không tính ∆ , hãy giải thích vì sao mỗi phương trình sau có nghiệm:
3 x 2 – x – 8 = 0
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
Phương trình 3 x 2 – x – 8 = 0 có:
a = 3, c = -8 nên ac < 0
Vậy phương trình có 2 nghiệm phân biệt.
Vì sao khi phương trình a x 2 + bx + c = 0 có các hệ số a và c trái dấu thì nó có nghiệm? Áp dụng: Không tính ∆ , hãy giải thích vì sao mỗi phương trình sau có nghiệm:
2004 x 2 + 2x – 1185 5 = 0
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
Phương trình 2004 x 2 + 2x - 1185 5 = 0 có:
a = 2004, c = -1185 5 nên ac < 0
Vậy phương trình có 2 nghiệm phân biệt.
2. Đối với phương trình bậc hai a x 2 + b x + c = 0 (a ≠ 0), hãy viết công thức tính Δ, Δ'.
Khi nào thì phương trình vô nghiệm?
Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.
Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.
Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt?
Đối với phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0), hãy viết công thức tính Δ, Δ'.
Khi nào thì phương trình vô nghiệm?
Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.
Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.
Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt?
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Vì sao khi phương trình \(ax^2+bx+c=0\) có các hệ số a và c trái dấu thì nó có nghiệm ?
Áp dụng : Không tính \(\Delta\), hãy giải thích vì sao mỗi phương trình sau có nghiệm :
a) \(3x^2-x-8=0\)
b) \(2004x^2+2x-1185\sqrt{5}=0\)
c) \(3\sqrt{2}x^2+\left(\sqrt{3}-\sqrt{2}\right)x+\sqrt{2}-\sqrt{3}=0\)
d) \(2010x^2+5x-m^2=0\)
a) phương trình có a.c=3.(-8)=-24<0
vì a.c <0 nên phương trình có 2 nghiệm
b) phương trình có \(a.c=2004.\left(-1185\sqrt{5}\right)< 0\)
vì a.c<0 nên phương trình có 2 nghiệm
c) phương trình có \(a.c=3\sqrt{2}.\left(\sqrt{2}-\sqrt{3}\right)=6-3\sqrt{6}< 0\)
vì a.c<o nên phương trình có 2 nghiệm
d)phương trình có a.c=2010.(-m2)=-2010m2<0
vì a.c<0 nên phuong trình có 2 nghiệm
Cho phương trình: ax2 + bx + c = 0, (a, b, c là các hệ số và a >0).
Chứng minh rằng nếu b > a + c thì phương trình luôn có hai nghiệm phân biệt.
Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)
Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)
Hay \(\Delta>\left(a-c\right)^2\ge0\)
Vậy ta có điều phải chứng mình
b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?
bình phương 2 vế nhé bạn