Tìm x,y thuộc Z
3x-xy-y=5
a,Tìm x thuộc z/|x|<18
b,Tìm xy thuộc z/|x-3|+|y-5|=0
c,Tìm các cặp số nguyên (xy)/|x|+|y|=4
d,Tìm các cặp số nguyên (xy)/|x|+|y|<hoặc=3
tìm x y thuộc z
a) x+y=xy
b) 2x-xy-2y=3
c) 4x-xy+5y=17
d) 2xy+2n-y=5
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
Tìm x,y thuộc Z cho
a,(x-1).(xy-5)=5
b,x+xy+y=3
a) x,y thuộc Z => (x-1)(xy-5)=5 <=> (x-1); (xy-5) lần lượt thuộc các cặp Ư(5) <=> (x-1); (xy-5) thuộc (1;5); (-1;-5); (-5;-1); (5;1)
x-1 | 1 | 5 | -1 | -5 |
x | 2(t/m đk) | 6(t/m đk) | 0(t/m đk) | -4(t/m đk) |
xy-5 | 5 | 1 | -5 | -1 |
y | 5(t/m đk) | 1(t/m đk) | 0(t/m đk) | 1(t/m đk) |
=> các cặp x;y thỏa mãn là: ....
b) \(x+xy+y+1=4\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=4\Leftrightarrow\left(x+1\right)\left(y+1\right)=4\)
đến đây xét các cặp giá trị như trên nha
sai rồi ! nếu xy-5= -1 thì y = -1 chứ!
Tìm x,y thuộc Z cho
a,(x-1).(xy-5)=5
b,x+xy+y=3
tìm x,y thuộc z :
a, xy+2x-y=5
b, xy+x+y=0
a) ta có x(y+2)-(y+2)=3<=>(x-1)(y+2)=3 đưa về tích các số nguyên
còn câu b tương tự
Tìm x,y thuộc Z, biết:
a) xy+x=3
b) 5+xy=y
c) 2x+3+y=xy
a,Ta có:\(xy+x=3\)
\(\Leftrightarrow x\left(y+1\right)=3\)
Vì x,y thuộc Z \(\hept{\begin{cases}x\\y+1\end{cases}}\in Z\)
\(\Rightarrow x;y+1\inƯ\left(3\right)\)
\(\Rightarrow x;y+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y+1=-1\Rightarrow y=-2\end{cases}}\)
xy+2x+y=5, Tìm x,y thuộc z
\(xy+2x+y=5\)
\(xy+2x+y+2=7\)
\(x\left(y+2\right)+\left(y+2\right)=7\)
\(\left(x+1\right)\left(y+2\right)=7\)
=> \(\left(x+1\right);\left(y+2\right)\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
y+2 | 7 | -7 |
y | 5 | -9 |
Vậy ta có các cặp x; y : (0;5),(-2;-9)
xy-3x+y=5 tìm x,y thuộc z
=>x(y-3)+y-3=2
=>(x+1)(y-3)=2
\(\Leftrightarrow\left(x+1;y-3\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(1;4\right);\left(-2;1\right);\left(-3;2\right)\right\}\)
tìm x,y (x,y thuộc Z) biết x2y-xy-5x+5=5
Tìm x ; y thuộc z .Biết :
a.(x+2) * (y-5) = -7
b.(x-1) * (xy-3) = -5
a. (x + 2) * (y - 5) = -7
<=> (y - 5) = -\(\dfrac{7}{x+2}\)
x ∈ Z => 7 chia hết cho (x + 2)
=> x = 5
<=> y -5 = -1
y = -1 + 5
y = 4
Vậy x = 5 và y = 4
b. (x-1) * (xy-3) = -5
<=> (xy-3) = -\(\dfrac{5}{x-1}\)
x ∈ Z => 5 chia hết cho x-1
=> x =6 ; -4; 2
TH1 : x = 6 => 6y-3
<=> 6y - 3 = -\(\dfrac{5}{6-1}\)
=> 6y - 3 = -1
6y = -1+3
6y = 2
y = 6:2
y = 3
TH2 : x = -4
<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)
<=> -4y - 3 = 1
-4y = 1 + 3
-4y = 4
y = 4 : -4
y = -1
TH3 : x = 2
<=> 2y - 3 = -\(\dfrac{5}{2-1}\)
<=> 2y - 3 = -5
2y = -5 + 3
2y = -2
y = -2 : 2
y = -1
Vậy x =2 và y = -1 hoặc x = -4 và y = -1