Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quang Bảo
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
phan thu hà
Xem chi tiết
Nguyễn Nguyệt Hà
Xem chi tiết
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Xyz OLM
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Trần Thu Hà
11 tháng 6 2021 lúc 14:21

2018^4n * 2019^4n *2020^ 4n

=(...8.^4)^n* (....9.^4)^n *(...0^4)^n

=...6^n* .....1^n* ...0^n

=....6 *...1 *...0( vì số tận cùng = 6,1,0 khi nâng lên bất kì lũy thừa nào thì cũng cho ta tận cùng =6 ,1,0)

= ...0 

mà số có tận cùng =0 thì là số chính phương vậy ko có n thỏa mãn

mình ko chắc có đúng ko nữa

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
11 tháng 6 2021 lúc 14:25

xin lỗi + ko phải nhân

Khách vãng lai đã xóa
Phạm Ngọc Anh
Xem chi tiết
物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Nguyễn Viết Tùng
Xem chi tiết
Tăng Ngọc Đạt
22 tháng 8 2023 lúc 9:31

Gọi 2 số chính phương lẻ là: 2a+1; 2b+1

ĐK: a, b ϵ N

Theo bài ra, ta có 

\(\left(2a+1\right)^2+\left(2b+1^2\right)\)

\(4a^2+4a+1+4b^2+4b+1\)

\(4\left(a^2+a+b^2+b\right)+2\)

Vì \(4\left(a^2+a+b^2+b\right)⋮4\)

    \(2:4\) dư 2

\(4\left(a^2+a+b^2+b\right)+2:4\) dư 2

Mà số chính phương chia 4 dư 0 hoặc 1

\(\left(2a+1\right)^2+\left(2b+1\right)^2\) không phải SCP

Vậy tổng bình phương của 2 số lẻ bất kì ko là số chính phương