(4x -2 )4x-5 =(4x-2)x+13 x thuộc Z
` P = ( (3+x)/(3-x) - (3-x)/(3+x) - (4x^2)/( x^2-9) ) . ( (5)/(3-x) - (4x+2)/(3x-x^2) ) `
a) Rút gọn
b) Tính P với `x^2 - 4x + 3 = 0 `
c) Tìm x để P > 0
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P = -4
g) Tìm GTNN của P với x thuộc Z
h) Tìm x để P > 4x
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
tìm x thuộc z để (4x^3+11x^2+5x+5)chia hết cho (x+2) ;(x^3-4x^2+5x-1)chia hết cho (x-2)
Thực hiện phép chia đơn thức ta có :
4x3 + 11x2 + 5x + 5 : x + 2 dư 7
Để 4x3 + 11x2 + 5x + 5 ⋮ x + 2 thì 7 ⋮ x + 2
=> x + 2 ∈ Ư(7) = { 1; 7; -1; -7 }
Ta có bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
Vậy để 4x3 + 11x2 + 5x + 5 ⋮ x + 2 thì 7 ⋮ x + 2 thì x ∈ { -9; -3; -1; 5 }
tìm x thuộc z để (4x^3+11x^2+5x+5)chia hết cho (x+2); (x^3-4x^2+5x-1)chia hết cho (x-2)
tìm x thuộc z để (4x^3+11x^2+5x+5)chia hết cho (x+2); (x^3-4x^2+5x-1) chia hết cho (x-2)
tìm x,y thuộc Z:
1) y^2+y=x^4+x^5+x^2+x
2) x^4 +4x^3 +6x^2 +4x =y^2
-x^2+4x-5<0 với x thuộc z
\(\Leftrightarrow-\left(x^2-4x+5\right)< 0\)
\(\Leftrightarrow-\left(x-2\right)^2-1< 0\)(luôn đúng)
Tìm x,y thuộc Z sao cho 4x^2-y^2-3xy-11x+y=13
1CMR: \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8 với mọi n thuộc z
2a) Tìm GTNN của A=\(x^2+4x+5\)
b)Tìm x,y biết : \(x^2+y^2-4x+6y+13=0\)
2 a) x2 + 4x + 5
= x2 + 2.x.2 + 22 + 1
=(x + 2)2 +1
vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x
suy ra A luôn lớn hơn hoặc bằng 1
dấu '=' xảy ra khi x+2=0 suy ra x=-2
vậy GTNN của A là 1 khi x= -2
b)x2 + y2 - 4x +6y +13=0
(x2 - 4x +4)+(y2 + 6y +9)=0
(x-2)2 + (y+3)2 =0
vì (x - 2)2 lớn hơn hoặc bằng 0 với mọi x
(y+3)2 lớn hơn hoặc bằng 0 với mọi y
nên để (x-2)2 + (y+3)2 =0
thì x-2=0 và y+3=0
x=2; y= -3
\(A=\left(1-\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
a) R/g và Txđ
b) Tìm x thuộc Z để A thuộc Z