cho tam giác ABC cân tại A, vẽ BH vuông AC ( H thuộc AC ) , CK vuông AB ( K thuộc AB ) . gọi I là giao điểm BH và CK chứng minh rằng
a) tam giác BCH = tam giác CBK
b) CK = BH
c) tam giác BIC cân tại I
CHO TAM GIÁC NHỌN ABC CÂN TẠI A VẼ BH VUÔNG GÓC VỚI AC (H Thuộc AC) CK vuông góc với AB ( K thuộc AB )
A/ Chứng minh rằng AH=AK
B/ Gọi I LÀ GIAO ĐIỂM CỦA BH VÀ CK. Chứng minh tam giác BIC cân
C/Chứng minh rằng AI là phân giác của góc A
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
Cho tam giác ABC cân tại A ( Â < 90*) vẽ BH vuông góc AC ( H thuộc AC ) CK vuông góc AB ( K thuộc AB )
a,Chứng minh rằng AH=AK
b,Gọi I là giao điểm cảu BH và CK. chứng minh tam giác BIC cân
c,Chứng minh AI là tia phân giác của Â
cho tam giác ABC cân tại A. kẻ BH vuông góc AC, CK vuông góc AB(H thuộc AC, K thuộc AB)
a)CM: tam giác AKH cân
b)Gọi I là giao của BH và CK, AI cắt BC tại M. Chứng minh IM là phân giác của BIC
a: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
góc BAH chung
AB=AC
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: góc ABH+góc HBC=góc ABC
gócACK+góc ICB=góc ACB
mà góc ABC=góc ACB; góc ABH=góc ACK
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
Cho tam giác ABC cân tại A ,kẻ BH vuông góc AC,CK vuông góc AB (H thuộc AC ,k thuộc AB). chứng minh tam giác ABH =Tam giác ACK . Gọi I là giao của BH vaf Ck ,AI cắt BC tại M .chứng minh IM là phân giác
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;