tìm x,y,z
biết x/3=y/2=5/z với x,y,z nguyên dương
Tìm các số nguyên dương x;y;z biết rằng.x^3-y^3-z^3=3xyz va x^2=2(y+z)
c) Tìm các số nguyên dương x, y, z biết: (x – y)3 + (y – z)2 + 2017 |x- z| = 2019^2020
bài 1: Tìm x,y,z thuộc Z : Biết x-y=9; y-z= -10;z+11
bài 2: Cho a là 1 số nguyên dương . Hỏi b là số nguyên dương hay số nguyên âm nếu:
a) ab là một số nguyên dương
b) ab là 1 số nguyên âm
bài 3: Tìm x thuộc Z biết:
a) x-14=3x+18
b)2(x-5)- 3(x-4)= -6+15(-3)
c)(x+7)(x-9)=0
d)I2x-5I-7=22
cho x,y,z là các số nguyên dương với \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm max : \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\)
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Tìm các số nguyên dương x, y, z. Biết :
x^3 + y^3 + z^3 = 3xyz và x^2 = 2(x+y)
Tìm x,y,z là các số nguyên dương biết: x3-y3-z3=3xyz và x2=2(y+z)
tìm các số nguyên x ,y, z biết x + y =2 y+z=3 z+x = -5
\(x\) + y = 2; ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z
⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 2 - 3 + z ⇒ \(x\) = -1 + z
Thay \(x\) = -1 + z vào biểu thức z + \(x\) = -5 ta có:
z - 1 + z = -5
2z = -5 + 1 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = -2
Thay z = -2 vào biểu thức \(x\) = -1 + z ta có \(x\) = -1 -2 = -3
Thay z = -2 vào biểu thức y = 3 - z ta có: y = 3 - (-2) = 5
Tìm 3 số nguyên dương x,y,z biết :x.y.z=x+y+z
x.y.z = x+y+z
=>x=1 ; y=2 ; z=3
nhớ k cho mk nha
tìm tìm số nguyên x y z biết x+y =2 y+z =3 x+z = -5
\(x\) + y = 2 ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z ⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 3 - z - 2 ⇒ \(x\) = -1+ z
Thay \(x\) = - 1 + z vào biểu thức \(x\) + z = - 5 ta có: -1 + z + z = -5
⇒ 2z = 1 - 5 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = - 2
Thay z = - 2 vào biểu thức \(x\) = -1 + z ta có: \(x\) = -1 - 2 = -3
Thay \(x\) = - 3 vào biểu thức: y = 2 - \(x\) ta có: y = 2 - (-3) = 5
Vậy các số nguyên \(x\); y;z thỏa mãn đề bài là:
(\(x\); y; z) = (-3; 5; -2)