Rút gọn
A= a . (b - c) - b . (a + c)
B= (a + b) . (c - d) - (a - d) . (b + c)
BÀI TOÁN: Bỏ dấu ngoặc và rút gọn
a) a(b-c+d)-ad;
b) (a-b)(c+d)+(-a+b)(c+d);
c) (a+b)(c+d)-(a-b)(c+d)
a: =ab-ac+ad-ad=ab-ac
b:=(c+d)(a-b-a+b)=0
các bạn giúp mình làm bài toán này nhé !
a: =ab-ac+ad-ad=ab-ac
b:=(c+d)(a-b-a+b)=0
HT
Rút gọn
a) (a-b-c)-(-c+b+a)-(a-b)
b)a(b+c)-a(b+d)-(1+ac-ad)
a: \(\left(a-b-c\right)-\left(-c+b+a\right)-\left(a-b\right)\)
\(=a-b-c+c-b-a-a+b\)
\(=-a-b\)
b: \(a\left(b+c\right)-a\left(b+d\right)-\left(1+ac-ad\right)\)
\(=ab+ac-ab-ad-1-ac+ad\)
=-1
1. Cho \(a^3+b^3+c^3=3abc\) (a+b+c ≠0)
Tính giá trị biểu thức:
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
2. Rút gọn
a) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)
b) \(\dfrac{x^2+8x+7}{x^3+2x^2+x}\)
Bài 1:
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)
Bài 2:
a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)
b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)
Rút gọn các tổng sau:
a, (a - b + c - d) - (a +b + c + d)
b, (- a + b - c) + (a - b) - (a - b - c)
c, - (a - b - c) + (b - c + d) - ( - a + b + d)
a) = a - b + c - d - a - b - c - d
= -2b - 2d
b) = -a + b - c + a - b - a + b + c
= -a + b
c) = -a + b + c + b - c + d + a - b - d
= b
a) = a - b + c - d - a - b - c - d
= -2b - 2d
b) = -a + b - c + a - b - a + b + c
= -a + b
c) = -a + b + c + b - c + d + a - b - d
= b
Bỏ ngoặc rồi rút gọn biểu thức:
a) - ( - a + c – d ) – ( c – a + d ) ; b) – ( a + b - c + d ) + ( a – b – c –d )
c) a( b – c – d ) – a ( b + c – d ) ; d)(a+ b) ( c + d) – ( a + d ) ( b + c )
e)( a + b ) ( c – d ) – ( a – b ) ( c + d ) ; f) ( a + b ) 2 – ( a – b ) 2
a) - ( - a + c – d ) – ( c – a + d )
= a - c - d - c + a + d
= (a + a) + (-c - c) + (-d + d)
= 2a - 2c
b) – ( a + b - c + d ) + ( a – b – c –d )
= - a - b + c - d + a - b - c - d
= (-a + a) + (-b - b) + (c - c) + (-d - d)
= -2b - 2d
a) - ( - a + c - d) - ( c - a + d )
= a - c + d - c + a - d
= 2a
b) - ( a+ b - c + d ) + ( a -b -c -d )
= - a-b+c-d+a-b-c-d
=-2d -2b
c) a(b-c-d) - a(b+c-d)
= a(b-c-d-b-c+d)
= ab-ac-ad-ab-ac+ad
= -2ab-2ac
d) (a+b)(c+d)-(a+d)(b+c)
= ac+ad+bc+bd - (ab+ac+bd+cd)
= ac+ad+bc+bd-ab-ac-bd-cd
=ad+bc-ab-cd
a) - ( - a + c - d) - ( c - a + d )
= a - c + d - c + a - d
= 2a
b) - ( a+ b - c + d ) + ( a -b -c -d )
= - a-b+c-d+a-b-c-d
=-2d -2b
c) a(b-c-d) - a(b+c-d)
= a(b-c-d-b-c+d)
= ab-ac-ad-ab-ac+ad
= -2ab-2ac
d) (a+b)(c+d)-(a+d)(b+c)
= ac+ad+bc+bd - (ab+ac+bd+cd)
= ac+ad+bc+bd-ab-ac-bd-cd
=ad+bc-ab-cd
e)(a+b)(c-d)-(a-b)(c+d)
= ac-ad+bc-bd-ac-ad+bc+bd
= 2bc-2ad
f) ( a + b )2 – ( a – b )2
= a2+2ab+b2 - (a2+2ab-b2)
=a2+2ab+b2 - a2-2ab+b2
=2b2
Bài 1: bỏ dấu ngoặc rồi rút gọn biểu thức a, - ( - a + c - d ) - ( c - d + d) b, - ( a + b - c + d ) + (a - b - c - d) c, a( b - c - d ) - a( b + c -d ) d*, (a + b).(c+d) - ( a+d).(b+c) e*, (a+b).(c-d) - (a-b).(c+d) f*, (a+b)2 - (a-b)2
a, -( -a + c - d) - ( c - d + d) = a - c + d - c + d - d = a + d
b, - ( a+b-c+d) + (a-b-c-d) = -a -b+c-d + a-b-c-d = -2b + (-2c)= -2(b+c)
A=\(\frac{\left(X+2\right)^2}{X}\left(1-\frac{X^2}{X+2}\right)\)và B=\(\frac{4}{x^2-4x+4}\)
a) rút gọnA
b) tìm x thuộc Z để A nguyên dương
c) tính C=\(\frac{A}{B}\)
d) tìm giá trị của x để C>0
a, \(A=\frac{\left(x+2\right)^2}{x}\left(1-\frac{x^2}{x+2}\right)=\frac{\left(x+2\right)^2}{x}\left(\frac{x+2-x^2}{x+2}\right)\)
\(=\frac{-\left(x+2\right)^2\left(x-2\right)\left(x+1\right)}{x\left(x+2\right)}=\frac{-\left(x\pm2\right)\left(x+1\right)}{x}\)
c, Theo bài ra ta có : \(C=\frac{A}{B}\)hay \(\frac{\frac{-\left(x\pm2\right)\left(x+1\right)}{x}}{\frac{4}{\left(x-2\right)^2}}=\frac{\frac{-\left(x+2\right)\left(x+1\right)}{x}}{\frac{4}{x-2}}\)
d, Theo bài ra ta có :
\(C>0\)hay \(\frac{\frac{-\left(x+2\right)\left(x+1\right)}{x}}{\frac{4}{x-2}}>0\)
\(\Leftrightarrow\frac{-\left(x+2\right)\left(x+1\right)}{x}.\frac{x-2}{4}>0\)
\(\Leftrightarrow-\left(x+2\right)\left(x+1\right)>0\Leftrightarrow\left(x+2\right)\left(x+1\right)>0\)
\(\Leftrightarrow x>-2;x>-1\Rightarrow x>-1\)
Bỏ dấu ngoặc rồi rút gọn biểu thức:
a) - ( - a + c - d) - (c - a + d )
b) - (a + b - c + d) + ( a - b - c -d )
c) ( a + b - c ) - ( b - c + d)
d) ( b + a) + ( c - d) - (c +a ) - ( b - d)
e) ( a - b) - ( d + a) - (c - d) + ( c + b)
f) - a + ( c- b ) - (c + a - b)
a) -(-a + c - d) - (c - a + d) = a - c + d - c + a - d = (a + a) - (c + c) + (d - d) = 2a - 2c
b) -(a + b - c + d) + (a - b - c - d) = -a - b + c - d + a - b - c - d = (-a + a) - (b + b) + (c - c) - (d + d) = -2b - 2d
c) (a + b - c) - (b - c + d) = a + b - c - b + c - d = a + (b - b) - (c - c) - d = a - d
d) (b + a) + (c - d) - (c + a) - (b - d) = b + a + c - d - c - a - b + d = (b - b) + (a - a) + (c - c) - (d - d) = 0
e) (a - b) - (d + a) - (c - d) + (c + b) = a - b - d - a - c + d + c + b = (a - a) - (b - b) - (d - d) - (c - c) = 0
f) -a + (c - b) - (c + a - b) = - a + c - b - c - a + b = (-a - a) + (c - c) - (b - b) = -2a
a ) a - c + d - c + a - d = 2a - 2c
b ) -a - b + c - d + a - b - c - d = -2b - 2d
CÁC CÂU CÒN LẠI LÀM TƯƠNG TỰ NHÉ!!
a) - ( -a + c - d ) - ( c - a + d ) = a - c + d - c + a - d = ( a + a ) - ( c + c ) + ( d - d ) = 2a - 2c = 2 ( a - c )
b) - ( a + b - c + d ) + ( a - b - c - d ) = -a - b + c - d + a - b - c - d = ( -a + a ) - ( b + b ) + ( c - c ) - ( d - d ) = -2b
c) ( a + b - c ) - ( b - c + d ) = a + b - c - b + c - d = a + ( b + b ) - ( c - c ) - d = a + 2b -d
d) ( b + a ) + ( c - d ) - ( c + a ) - ( b - d ) = b + a + c - d - c - a - b + d = ( b - b ) + ( a - a ) + ( c - c ) - ( d - d ) = 0
e) ( a - b ) - ( d + a ) - ( c - d ) + ( c + b ) = a - b - d - a - c + d + c + b = ( a - a ) - ( b - b ) - ( d - d ) - ( c - c ) = 0
f) -a + ( c - b ) - ( c + a - b ) = -a + c - b - c - a + b = ( -a - a ) + ( c - c ) - ( b - b ) = -2a
=))
Bỏ dấu ngoặc rồi rút gọn biểu thức
a) -(-a+c-d)-(c-a+d)
b) -(a+b-c+d)+(a-b-c-d)
c) a(b-c-d)-a(b+c-d)
d*) (a+b)(c+d0-(a+d)(b+c)
e*) (a+b)(c-d)-(a-b)(c+d)
f*) (a+b)^2-(a-b)^2
Bỏ dấu ngoặc rồi rút gọn biểu thức
a) -(-a+c-d)-(c-a+d)
b) -(a+b-c+d)+(a-b-c-d)
c) a(b-c-d)-a(b+c-d)
d*) (a+b)(c+d0-(a+d)(b+c)
e*) (a+b)(c-d)-(a-b)(c+d)
f*) (a+b)^2-(a-b)^2
a)-(-a+c-d)-(c-a+d)=a-c+d-c+a-d=(a+a)-(c+c)+(d-d)=2a-2c=2(a-c)
b)-(a+b-c+d)+(a-b-c-d)=-a-b+c-d+a-b-c-d=(-a+a)-(b+b)+(c-c)-(d+d)=0-2b+0-2d=-2(b-d)
c)a(b-c-d)-a(b+c-d)=ab-ac-ad-ab-ac+ad=(ab-ac)-(ac+ac)-(ad-ad)=2ac
d)đề sai
e)(a+b)(c-d)-(a-b)(c+d)=ac+b-ad+b-(ac-b+ad-b)=ac+b-ad+b-ac+b-ad+b=(ac-ac)+(b+b+b+b)-(ad+ad)=4b-2ad=2(2b-ad)
f)(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=a2+2ab+b2-a2+2ab-b2=(a2-a2)+(2ab+2ab)+(b2-b2)=4ab
mk k chắc đâu
-(a+b-c)+(b+c-d)-(c+d-a)