Tìm các cặp số x,y:
x+2y=10
a. tìm các số nguyên n sao cho (2n + 5) chia hết cho (n - 1)
b. tìm các cặp số nguyên (x,y) biết rằng: x^2y + 2y - x^2 = -10
Trả lời nhanh hộ mình ạ.
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM
cái baì này mà cx ko biết . Đúng là đồ ngu
Phân tích đa thức thành nhân tủ
3x^2+y^2+2x-2y=1
x^3+y^3-3xy+x+y+2
Tìm giá trị nguyên của x,y:x^2+2xy+2y^2-4=0
giải các pt /x-2/ +/x-3/ + /2x-8/=9
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn:
x/10-1/2y-1=3/10
\(\dfrac{1}{2}\)y hay \(\dfrac{1}{2y}\) thế em ơi???
tìm các cặp số (x,y) t/m \(2x^2+2y^2-2xy+y+x-10=0\)
TÌM CÁC SỐ CHƯA BIẾT
1) Y:X=5 VA Y-X =240
2) A:B:C=3:5:7 VA A+B-C=10
3) X:Y:Z=5:7:8 VÀ X+Y-Z=2,4
BÀI NÀY LÀ TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU
Tìm các cặp số nguyên (x; y) thỏa mãn phương trình: \(2x^2+2y^2 -2xy+y+x-10=0\)
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
Tìm các cặp số nguyên (x:y) thỏa mãn phương trình\(2x^2+2y^2-2xy+y-x-10=0\)
\(2x^2+2y^2-2xy+y-x-10=0\)
\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)
Coi pt trên là pt bậc 2 ẩn x
\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)
\(=4y^2+4y+1-16y^2-8y+80\)
\(=-12y^2-4y+81\)
Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)
Giải nốt đi , đến đây dễ r
tìm các cặp số nguyên (x,Y) thoarmanx xy+x-2y=5
tìm các cặp số nguyên x;y thỏa mãn: xy-x-2y=21
\(xy-x-2y=21\)
\(\Rightarrow x\left(y-1\right)=21+2y\)
\(\Rightarrow x=\dfrac{2y+21}{y-1}\)
Vì \(x\) là số nguyên nên \(\left(2y+21\right)⋮\left(y-1\right)\)
\(\Rightarrow\left(2y-2+23\right)⋮\left(y-1\right)\)
\(\Rightarrow23⋮\left(y-1\right)\)
\(\Rightarrow y-1\inƯ\left(23\right)\)
\(\Rightarrow y-1\in\left\{1;-1;23;-23\right\}\)
\(\Rightarrow y\in\left\{2;0;24;-22\right\}\)
\(\Rightarrow x\in\left\{25;-21;3;1\right\}\)
-Vậy các cặp số \(\left(x;y\right)\) là \(\left(2;25\right)\), \(\left(0;-21\right)\), \(\left(24;-21\right)\), \(\left(-22;1\right)\).