CMR:Nếu tổng hai số nguyên chia hết cho 3 thì tổng lập phuongư cuả chúng chia hết cho 9
Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Tội nghiệp thanh niên , 3 năm r mà dell cs ma nào trả lời
∈" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:21.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Z)ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )
gọi 2 số đó là x ; y ( x ; y ∈ Z )
ta có x3 + y3 = (x + y)(x2 − xy + y2)x3 + y3 = (x+y)(x2 − xy + y2)
do x+y⋮3 => DPCM
chứng minh nếu tổng 2 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Ta giả sử 2 số đó là x, y (x,y\(\in Z\))
Theo đề ta có: \(x+y=3k\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(x+y\right)^2\left(x+y\right)-3\left(x+y\right)xy=9k^2\left(x+y\right)-9kxy\)
\(=9k\left(kx+ky-xy\right)⋮9\)
=> đpcm
Chứng minh nếu tổng của 2 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+b3 chia hết cho 3
gọi 2 số đó là x;y(x;y∈∈Z)
ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)
do x+y⋮⋮3 => DPCM
Chúc làm bài tốt
Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
1/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8.CMR: hiệu 2 số đó cũng chia hết cho 8
2/ CM: Nếu bình phương thiếu của tổng hai số nguyên chia hết chi 6 thì tích 2 số ấy cũng chia hết cho 9
3/ CM: TỔng các lập phương của 3 sô nguyên liên tiếp thì chia hết cho 9
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
CMR:Nếu tổng của 2 số tự nhiên lẻ chia hết cho 2 thì tích của chúng chia hết cho 2
bài này vô ly vì 2 số lẻ luôn có tích là số lẻ .Do đó chúng không thể chia hết cho 2
tổng của 2 số tự nhiên lẻ luôn chia hết cho 2 là đương nhiên lại còn nếu
Chứng minh rằng nếu tổng 3 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Gọi 3 số nguyên đó là a,b,c
Ta có: a+b+c chia hết cho 3
Xét hiệu a3+b3+c3-(a+b+c)
=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)
a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3
tương tự ta cũng có b3-b và c3-c đều chia hết cho 3
Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3
Vậy............