Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
Chứng minh rằng nếu phải p và q là 2 số nguyên tố thoả mãn
p2-q2=p-3p+2 thì p2+q2 cũng là số nguyên tố
Chứng minh rằng hiệu các bình phương của 2 số lẻ bất kỳ thì chia hết cho 8
chứng minh rằng nếu n là số nguyên lẻ thì A= n3-3n2-n+21 chia hết cho 6
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
Bài 1: Chứng minh rằng:
2165+4.613 chia hết cho 40
Bài 2: Cho x3=2p+1 trong đó x là số tự nhiên, p là số nguyên tố. Tìm x.
Bài 3: Tìm một số biết rằng bình phương của nó bằng 4 lần lập phương của số ấy.
CÁC BẠN GIÚP MÌNH VỚI
Chứng minh rằng với mọi số nguyên n thì (2n-1)^3-(2n-1) chia hết cho 8
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
a) Chứng minh rằng với mọi số nguyên x,y thì :
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương
b) Cho \(a_1,a_2,...,a_{2016}\) là các số tự nhiên có tổng chia hết cho 3.
Chứng minh rằng : \(A=a_1^3+a_2^3+a_3^3+...+a_{2016}^3\) chia hết cho 3.
Chứng minh rằng với moi số nguyên dương n thì:
a) \(7^{n+2}+8^{2n+1}\) chia hết cho 19
b) \(n^4+6n^3+11n^2+6n\) chia hết cho 24