Giải các phương trình sau
(x-1)×(x-5)-(x-3)×(x-4)=0
5√x-1=2√x+8
giải phương trình sau
1/ 2x( x+3) - 6 (x-3) =0
2/ 2x^2( 2x+3) +(2x+3) =0
3/ (x-2) (x+1) -(x-2) 4x =0
4/ 2x ( x-5) -3x +15=0
5/ 3x(x+4) -2x-8 =0
6/ x^2 (2x-6) + 2x -6 =0
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
Bài 1: Giải các phương trình dưới đây
1) x2 - 9 = (x - 3)(5x +2)
2) x3 - 1 = (x - 1)(x2 - 2x +16)
3) 4x2 (x - 1) - x + 1 = 0
4) x3 + 4x2 - 9x - 36 = 0
5) (3x + 5)2 = (x - 1)2
6) 9 (2x + 1)2 = 4 (x - 5)2
7) x2 + 2x = 15
8) x4 + 5x3 + 4x2 = 0
9) (x2 - 4) - (x - 2)(3 - 2x) = 0
10) (3x + 2)(x2 - 1) = (9x2 - 4) (x + 1)
11) (3x - 1)(x2 + 2) = (3x - 1)(7x - 10)
12) (2x2 + 1) (4x - 3) = (x - 12)(2x2 + 1)
1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)
hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)
2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)
hay \(x\in\left\{1;5\right\}\)
3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)
\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)
\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)
hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)
1.
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)
\(\Leftrightarrow x+3=5x-2\)
\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)
2.
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)
\(\Leftrightarrow x^2+x+1=x^2-2x+16\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
3.
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)
7.
\(\Leftrightarrow x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
8.\(\Leftrightarrow x^4+x^3+4x^3+4x^2=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0;x=-4\end{matrix}\right.\)
9.\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(3-2x\right)\)
\(\Leftrightarrow x+2=3-2x\)
\(\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
Giải các phương trình sau. 2x-1=2-x ; x-5x-1/6=8-3x/4. ; x/3 - 2x+1/2=x/6 - x ; (2x-5)(x+3)=0. ; (1-7)(2+x)=0
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2
giải phương trình sau
1/ x^2 -3x+2=0
2/ x^2 -6x+5=0
3/ 2x^2 +5x+3 =0
4/ x^2-8x+15=0
5/ x^2 -x-12=0
1/ x2-3x+2=0
⇒ (x2-2x)-(x-2)=0
⇒ x(x-2)-(x-2)=0
⇒ (x-1)(x-2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2) x2-6x+5=0
⇒x2-6x+9-4=0
⇒(x2-6x+9)-22=0
⇒(x-3)2-22=0
⇒(x-3-2)(x-3+2)=0
⇒(x-5)(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3) 2x2+5x+3=0
⇒ (2x2+2x)+(3x+3)=0
⇒ 2x(x+1)+3(x+1)=0
⇒ (x+1)(2x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)
4) x2-8x+15=0
⇒ (x2-8x+16)-1=0
⇒ (x-4)2-12=0
⇒ (x-4-1)(x-4+1)=0
⇒ (x-5)(x-3)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5) x2-x-12=0
⇒ (x2-4x)+(3x-12)=0
⇒ x(x-4)+3(x-4)=0
⇒ (x-4)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1: Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: Ta có: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3: Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4: Ta có: \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5: Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Giải các phương trình sau:
1) (x+2)(x+4)(x+6)(x+8)+16=0
2) (x+2)(x+3)(x+4)(x+5)-24=0
1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
Đặt \(x^2+10x=t\)
Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)
\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)
Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)
Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)
Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)
Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^
giải phương trình sau
1/ ( x-1) (2x+1) =0
2/ x (2x-1) (3x+15) =0
3/ (2x-6) (3x+4) x=0
4/ (2x-10)(x^2+1)=0
5/ (x^2+3) (2x-1) =0
6/ (3x-1) (2x^2 +1)=0
1/ ( x-1) (2x+1) =0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)
2/ x (2x-1) (3x+15) =0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)
3/ (2x-6) (3x+4).x=0
\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
4/ (2x-10)(x2+1)=0
\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)
5/ (x2+3) (2x-1) =0
\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)
6/ (3x-1) (2x2 +1)=0
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)
1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)
3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
4: Ta có: \(\left(2x-10\right)\left(x^2+1\right)=0\)
mà \(x^2+1>0\forall x\)
nên 2x-10=0
hay x=5
5: Ta có: \(\left(x^2+3\right)\left(2x-1\right)=0\)
mà \(x^2+3>0\forall x\)
nên 2x-1=0
hay \(x=\dfrac{1}{2}\)
6: Ta có: \(\left(3x-1\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\)
nên 3x-1=0
hay \(x=\dfrac{1}{3}\)
1.giải các phương trình sau:
a, 3(2x+1)/4 - 5x+3/6 = 2x-1/3 - 3-x/4
b, 19/4 - 2(3x-5)/5 = 3-2x/10 - 3x-1/4
c, x-2*3/2+3 + x-3*5/3+5 + x-5*2/5+2 = 10
d, x-3/5*7 + x-5/3*7 + x-7/3*5 = 2(1/3 + 1/5 + 1/7)
2. giải các phương trình:
a, x-1/9 + x-2/8 = x-3/7 + x-4/6
b, (1/1*2 + 1/2*3 + 1/3*4 + ... + 1/9*10) (x-1) + 1/10x = x- 9/10
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\frac{\left(x-2\right).3}{2}+3+\frac{\left(x-3\right).5}{3}+5+\frac{\left(x-5\right).2}{5}+2=10\)
\(< =>\frac{\left(x-2\right).3.15}{30}+\frac{\left(x-3\right).5.10}{30}+\frac{\left(x-5\right).2.6}{30}=10-2-3-5\)
\(< =>\frac{\left(x-2\right).45+\left(x-3\right).50+\left(x-5\right).12}{30}=0\)
\(< =>45x-90+50x-150+12x-60=0\)
\(< =>107x-300=0< =>x=\frac{300}{107}\)
Giải các phương trình sau:
1) \(2^x=64\)
2) \(2^x . 3^x . 5^x = 7\)
3) \(4^x + 2 . 2^x - 3 = 0\)
4) \(9^x - 4.3^x + 3 =0\)
5) \(3^{2(x+1)} + 3^{x+1} = 6\)
6) \((2 - \sqrt3)^x + (2 + \sqrt3)^x = 2\)
7) \(\log_{4} (x^2+3x) = 1\)
8) \(\log_{2} (x-2) + \log_{2} (x) = 3\)
9) \(\log^2_{3} (x-3) + \log_{3} (x-3) -6=0\)
1: \(2^x=64\)
=>\(x=log_264=6\)
2: \(2^x\cdot3^x\cdot5^x=7\)
=>\(\left(2\cdot3\cdot5\right)^x=7\)
=>\(30^x=7\)
=>\(x=log_{30}7\)
3: \(4^x+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)
=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)
=>\(2^x-1=0\)
=>\(2^x=1\)
=>x=0
4: \(9^x-4\cdot3^x+3=0\)
=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)
Đặt \(a=3^x\left(a>0\right)\)
Phương trình sẽ trở thành:
\(a^2-4a+3=0\)
=>(a-1)(a-3)=0
=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)
=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)
=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)
=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)
=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)
=>\(3^{x+1}-2=0\)
=>\(3^{x+1}=2\)
=>\(x+1=log_32\)
=>\(x=-1+log_32\)
6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)
Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)
Phương trình sẽ trở thành:
\(\dfrac{1}{b}+b=2\)
=>\(b^2+1=2b\)
=>\(b^2-2b+1=0\)
=>(b-1)2=0
=>b-1=0
=>b=1
=>\(\left(2+\sqrt{3}\right)^x=1\)
=>x=0
7: ĐKXĐ: \(x^2+3x>0\)
=>x(x+3)>0
=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)
=>\(x^2+3x=4^1=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)