Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Hoàng Quân
Xem chi tiết
HT.Phong (9A5)
13 tháng 8 2023 lúc 8:09

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

Trần Đình Hoàng Quân
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 11:10

a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )

c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )

Khách vãng lai đã xóa
Nguyen tuan cuong
Xem chi tiết
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Kiệt Nguyễn
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

trần thị minh nguyệt
Xem chi tiết
Hai Tran
26 tháng 11 2018 lúc 16:40

A=x2-2x+2

A=(x2-2x+1)+1

A=(x-1)2+1

(x-1)2\(\ge\)0 với mọi x

=> (x-1)2+1 >0 hay A>0

Vậy A luôn dương với mọi x,y,z

B=x2+y2+z2+4x-2y-4z+10

B=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

B=(x+2)2+(y-1)2+(z-2)2+1

(x+2)2\(\ge\)0 với mọi x

(y-1)2\(\ge\)0 với mọi y

(z-2)2\(\ge\)0 với mọi z

=>(x+2)2+(y-1)2+(z-2)2+1>0 hay B>0

Vậy B luôn dương với mọi x,y,z

C=x2+y2+2x-4y+6

C=(x2+2x+1)+(y2-4y+4)+1

C=(x+1)2+(y-2)2+1

(x+1)2\(\ge\)0 với mọi x

(y-2)2\(\ge\)0 với mọi y

=>(x+1)2+(y-2)2+1>0 hay C>0

Vậy C luôn dương với mọi x,y,z

Lê Quốc Anh
26 tháng 11 2018 lúc 16:41

a/ \(A=x^2-2x+2\\A=x^2-2x+1+1\\ A=\left(x-1\right)^2+1>0 \)

b/ \(B=x^2+y^2+z^2+4x-2y-4z+10\)

\(B=x^2+4x+4+y^2-2y+1+z^2-4z+4+1\)

\(B=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)

c/ \(C=x^2+y^2+2x-4y+6\)

\(C=x^2+2x+1+y^2-4y+4+1\)

\(C=\left(x+1\right)^2+\left(y-2\right)^2+1>0\)

trần thị minh nguyệt
26 tháng 11 2018 lúc 17:12

thanks

Cac chien binh thuy thu...
Xem chi tiết
ffcs
Xem chi tiết
ffcs
Xem chi tiết