Tính giá trị của tổng sau : \(1.2+2.3+3.4+...+n.\left(n+1\right)\)
Tính giá trị của tổng sau : \(1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
Đặt A là tên biểu thức
A=1.2.3+2.3.4+...+n(n+1)(n+2)
4A=1.2.3.4+2.3.4.4+...+n(n+1)(n+2).4
4A=1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 +...+ n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)
4A=[1.2.3.4+2.3.4.5+...+n(n+1)(n+2)(n+3)] - [0.1.2.3+1.2.3.4+...+(n-1)n(n+1)(n+2)]
4A=n(n+1)(n+2)(n+3)-0.1.2.3
A=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
\(A=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+3.4.5.4+...+4n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left(n+3-n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n\right)\)
\(\Rightarrow4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Tính tổng
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{n\left(n+1\right)}\)
=1-1/2+1/2-1/3+1/3-1/4+.....+1/n-1/n+1
=1-1/n+1
=n/n+1
Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .
= 1 - 1/ n + 1 .
= n+1 / n+1 - 1/ n+1 .
= n/ n+1 .
Đáp sô : n/ n+1
Giá trị của tổng \(S=1.2+2.3+3.4+...+49.50\).Vậy : \(S=?\) .
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A=\(\frac{49.50.51}{3}\)49.50.513
A=\(\frac{49.50.17.3}{3}\)49.50.17.33
A=49.50.17
A=41650
Đáp số : A=41650
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+49.50.(51-48)
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-48.49.50+49.50.51
=49.50.51
=124950
3S=1.2.3+2.3.3+3.4.3+...+49.50.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51
=0+0+...+0+0+49.50.51
=49.50.51
S=(49.50.51)/3
=41650
Đáp số:41650
Tính giá trị của biểu thức:
A= 9/1.2 +9/2.3 +9/3.4 +....+ 9/98.99 + 9/99.100
Ai nhanh mk tick. Ths
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=\frac{1}{9}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{9}.\frac{99}{100}\)
\(A=\frac{11}{100}\)
A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100
= 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
= 9. (1 - 1/100)
= 9 . 99/100
= 891/100
Tính giá trị biểu thức sau
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)
=9.(1/1-1/2+1/2-1/3+1/3-1/4+....+1/98-1/99+1/99-1/100)
=9.(1/1-1/100)
=9-9/100
=891/100
tính tổng 200 số hạng đầu tiên của dãy: \(\frac{1}{1.2};\frac{1}{2.3};\frac{1}{3.4};.....\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}\)
\(=\frac{200}{201}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)
\(=1-\frac{1}{201}=\frac{200}{201}\)
Ủng hộ nha,tớ ko ăn cóp đâu.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{200.201}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{1}-\frac{1}{201}\)
\(=\frac{200}{201}\)
tính tổng 100 số hạng đầu tiên của dãy
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....\)
100 số hạng đầu là
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)
ta có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}\)\(=\frac{100}{101}\)
1. tính nhanh : (1999/2011- 2011/1999) - (-12/1999- 12/2011)
2. ko quy đồng hãy tính tổng sau: A= -1/20+ -1/30+ -1/42+ -1/56+ -1/72+ -1/90
3. cho A= 12n/3n+3. tìm giá trị của n để:
a, A là 1 phân số
b, A là 1 số nguyên
c, với giá trị nào của số tự nhiên n thì A có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu?
2:
A=-(1/4-1/5+1/5-1/6+...+1/9-1/10)
=-(1/4-1/10)
=-1/4+1/10
=-5/20+2/20=-3/20
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)