Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hani Lê Trần 2
Xem chi tiết
Trần Thị Minh Vi
15 tháng 6 2017 lúc 13:45

\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

Hani Lê Trần 2
Xem chi tiết
Trà My
18 tháng 6 2017 lúc 16:47

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a

Bùi Anh Tuấn
Xem chi tiết

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a,\)ta được:

\(a\left(a+1\right)-6\)

\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)

\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)

Thay \(a=x^2+3x+1,\)ta được:

\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

Hani Lê Trần 2
Xem chi tiết
Mai Thanh Hải
15 tháng 6 2017 lúc 13:24

\(x^2\left(x^2+4\right)-x^2+4=x^4+4x^2-x^2+4=x^4+3x^2+4\)

                                        \(=\left(x^4+4x^2+4\right)-x^2\) 

                                        \(=\left(x^2+2\right)^2-x^2\)  

                                        \(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)

                                           

Lê Hoàng Tài
Xem chi tiết
KAl(SO4)2·12H2O
5 tháng 8 2018 lúc 10:35

1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)

\(=20x^2-41x+20+5x^2+19x-4+9x-4\)

\(=25x^2-13x+10\)

2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)

\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)

\(=15x^2-42x+24\)

Nguyễn Xuân Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:13

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

Phong Thế
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 10:33

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

Khách vãng lai đã xóa
Nguyễn Minh Đăng
11 tháng 10 2020 lúc 10:48

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

Khách vãng lai đã xóa
Mai Thanh
Xem chi tiết
Lê Ng Hải Anh
2 tháng 8 2018 lúc 10:13

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4+1\right)\left(x+4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\left(x-3\right)\)

=.= hok tốt!!

Nguyễn Thị Sao Mai
Xem chi tiết