cho hình vuông ABCD, cạnh AB bằng 1 (Đvd). Lấy M thuộc BC, N thuộc DC, sao cho góc MAN lằng 45 độ. CM BM+DN=MN
Cho hình vuông ABCD có cạnh bằng a. Trên BC, CD lần lượt lấy các điểm M,N sao cho góc MAN bằng 45 ° (M khác B, N khác C, M khác C, N khác D). Từ A kẻ AK vuông góc với MN (K thuộc MN). C/m: KM=MB và DN=NK
Tự vẽ hình nhé
Tạo hình: lấy điểm T thuộc đường thẳng DC( T không nằm trên đọan DC) sao cho góc DAT = góc BAM
lấy điểm H thuộc đường thẳng BC( H không nằm trên đọan BC) sao cho góc BAH = góc DAN.
Bạn tự c/m: \(\hept{\begin{cases}\Delta ATD=\Delta AMB\\\Delta ADN=\Delta ABH\end{cases}\Rightarrow\hept{\begin{cases}AT=AM\\AN=AH\end{cases}}}\) ( 2 cạnh tương ứng )
Tiếp theo c/m \(\hept{\begin{cases}\Delta TAN=\Delta MAN\\\Delta MAN=\Delta MAH\end{cases}\Rightarrow\hept{\begin{cases}\widehat{TNA}=\widehat{MNA}\\\widehat{NMA}=\widehat{HMA}\end{cases}}}\)( 2 góc tương ứng )
Đến đây bạn tự làm nốt nhé
Cho hình vuông ABCD cạnh a. Trên các cạnh BC và CD lấy 2 điểm M, N sao cho góc MAN=45 độ. Trên tia đối của tia DC lấy điểm E sao cho DE=BM
a)cm AE=AM rồi từ đó suy ra AN vuông góc EM
b) tìm vị trí M thuộc BC và N thuộc CD sao cho diện tích tam giác AMN lớn nhất
Bài toán :
Cho hình vuông ABCD. Lấy M thuộc BC; N thuộc DC sao cho góc MAN = 45o.
CMR : Đường cao AH vuông góc với MN và bằng AB
cho hình vuông ABCD cạnh a, M thuộc BC, N thuộc DC sao cho góc MAN bằng 45 độ. AM và AN cắt BD lần lượt tại P và Q.
C/m: BP, QP, DQ là 3 cạnh của 1 tam giác vuông.
cho hình vuông ABCD có cạnh bằng a. Trên BC là M, trên tia đối của tia DC lấy N sao cho BM=DN. Vẽ AH vuông góc với NM (H thuộc NM), AH cắt DC tại E. Gọi G là giao điểm của MN với AD. a. Chứng minh tam giác NAM vuông cân và D,H,B thẳng hàng.
Bài 1 : Cho hình vuông ABCD. Lấy M thuộc BC, N thuộc CD sao cho góc AMB = góc AMN. Kẻ AH vuông góc với MN
a) C/m : Tam giác AMH = tam giác AMB
b) C/m : Góc MAN = 45 độ
Bài 2 : Một hình vuông có cạnh bằng 5cm. Tính đường chéo của nó.
Một hình vuông có đường chéo bằng 16cm. Tính cạnh của hình vuông
Cho hình vuông ABCD cạnh = a . M thuộc cạnh BC ( M khác B,C) . N thuộc cạnh DC ( N khác C,D) sao cho góc MAN = 45 độ . Xác định vị trí M,N để tam giác AMN có diện tích lớn nhất.
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, cạnh bên SA vuông với đáy. Trên cạnh BC lấy điểm M di động và cạnh CD lấy N di động sao cho góc MAN=45 độ. Gọi BM=x, DN=y và (0<x;y<a)
Chứng minh a(x+y)=a2-xy
Cho hình vuoong ABCD. Một điểm M thuộc cạnh BC, điểm N trên cạnh DC sao cho góc MAN bằng 45 độ. GỌI P,Q lần lượt là giao điểm của đường chéo BD vs AN và AM.
a) CMR tam giác AQB và tam giác PQM đồng dạng
b) CM MP vuông góc vs AN .
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\); \(\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g).
\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).
△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)
\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).
b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).
△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).
Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)
\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)
\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)
\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)
Hay MP⊥AN tại P.