Tìm các cặp số nguyên x,y biết ( x - 1).(y+2)=7
Tìm tất cả các cặp số nguyên (x,y) biết rằng a, (x + 3).(y - 2) = 7 b, (x + 1).(xy+2) = 5
a: \(\Leftrightarrow\left(x+3;y-2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;9\right);\left(4;3\right);\left(-4;-5\right);\left(-10;1\right)\right\}\)
b: (x+1)(xy+2)=5
=>\(\left(x+1;xy+2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,xy\right)\in\left\{\left(0;3\right);\left(4;-1\right);\left(-2;-7\right);\left(-6;-3\right)\right\}\)
mà x,y là số nguyên
nên (x,y)=\(\varnothing\)
Tìm các cặp số nguyên (x,y) thuộc Z, biết: x-1/7 = 5/y+2
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Tìm các cặp số nguyên x, y biết:
a) x.y=5
b) (x+2)(y+1)=7
Sai r bn ơi
a ) Ta có : x . y = 5
\(\Rightarrow\)x = 1 và y = 5
Hoặc x = - 1 và y = - 5
Hoặc x = 5 và y = 1
Hoặc x = - 5 và y = - 1
b ) ( x + 2 )( y + 1 ) = 7
Ta lập bảng :
x + 2 | - 1 | 7 | - 7 | 1 |
y + 1 | - 7 | 1 | - 1 | 7 |
x | - 3 | 5 | - 9 | - 1 |
y | - 8 | 0 | - 2 | 6 |
Vậy : x = - 3 và y = - 8
Hoặc x = 5 và y = 0
Hoặc x = - 9 và y = - 2
Hoặc x = - 1 và y = 6
a) \(xy=5\)
\(\Rightarrow x;y\inƯ\left(5\right)\)
\(\Rightarrow x;y\in\left\{1;5;-1;-5\right\}\)
Vậy ta tìm được các cặp số nguyên x ; y là : { 1 ; 5 } ; { 5 ; 1 }; { -5 ; -1} ; { -1 ; -5}
b) \(\left(x+2\right)\left(y+1\right)=7\)
\(\Rightarrow x+2;y+1\inƯ\left(7\right)\)
Còn lại bạn lập bẳng tính nha!
tìm tất cả các cặp số nguyên (x,y) biết rằng (x+3)(y-2)=7
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
Tìm các cặp số nguyên x; y biết:
a) (x-5)(2y+1)=5
b) (x+7)(2x-y)=7
a) \(\left(x-5\right)\left(2y+1\right)=5=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)=1.5=5.1\)
Lập bảng giá trị ta có:
\(x-5\) | \(-1\) | \(-5\) | \(1\) | \(5\) |
\(x\) | \(4\) | \(0\) | \(6\) | \(10\) |
\(2y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(-3\) | \(-1\) | \(2\) | \(0\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(4;-3\right)\), \(\left(0;-1\right)\), \(\left(6;2\right)\), \(\left(10;0\right)\)
b) \(\left(x+7\right)\left(2x-y\right)=7=\left(-1\right)\left(-7\right)=\left(-7\right).\left(-1\right)=1.7=7.1\)
Lập bảng giá trị ta có:
\(x+7\) | \(-1\) | \(-7\) | \(1\) | \(7\) |
\(x\) | \(-8\) | \(-14\) | \(-6\) | \(0\) |
\(2x-y\) | \(-7\) | \(-1\) | \(7\) | \(1\) |
\(y\) | \(-9\) | \(-27\) | \(-19\) | \(-1\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(-8;-9\right)\), \(\left(-14;-27\right)\), \(\left(-6;-19\right)\), \(\left(0;-1\right)\)
tìm các cặp số nguyên x,y biết x/3=4/y ;x/y=2/7 và x+y=-28
trình bày đầy đủ nhé
Tìm cặp số nguyên x, y biết x-1.y=7
\(x\) - 1.y = 7
\(x\) - y = 7
\(x\) = 7 + y (y \(\in\) Z)