CMR 4 mũ 100 chia hết cho 5
a) CMR: (1991 mũ 1997 - 1997 mũ 1996) chia hết cho 10
b)CMR : (2 mũ 9 + 2 mũ 99 ) chia hết cho 100
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
Cmr
a)942 mũ 60-351 mũ 37 chia hết cho 5
b)99 mũ 5-98 mũ 4+97 mũ 3-96 mũ 2 chia hết cho 2 và 5.
Cho A = 4 + 4 mũ 2 + 4 mũ 3 + .... + 4 mũ 100 , chứng tỏ A chia hết cho 4 , a chia hết cho 5
A=4+42+43+...+4100
A=4(1+41+42+...+499)chia hết cho 4
suy ra a chia hết cho 4
A=(4+42)+(43+44)+...+(499+4100)
A=4(1+4)+43(1+4)+...+499(1+4)
A=(1+4)(4+43+...+499)
A=5(4+43+...+499)cha hết cho 5
suy ra Achia hết cho 5
Cho S = 1 - 3 - 3 mũ 2 - 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + ......+ 3 mũ 98 + 3 mũ 99
a/ CMR: S chia hết cho - 20
b/Tính S . Từ đó suy ra 3 mũ 100 :14 dư 11
CMR: 5 mũ 4 mũ n + 375 chia hết cho 1000
Cho S = 1 - 3 -3 mũ 2 - 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7 + ........+3 mũ 96 + 3 mũ 97 + 3 mũ 98 + 3 mũ 99
a/ CMR: S chia hết cho -20
b/ Tính S . Từ đó suy ra 3 mũ 100 : 14 dư 11
cmr
7 mũ 6 - 7 mũ 5 - 7 mũ 4 chia hết cho 77
76 - 75 - 74 \(⋮\)77
76 - 75 - 74 \(⋮\)7 . 11
Do có lũy thừa của 7 nên ta chỉ cần CM chia hết cho 11
A= 4+ 4 mũ 2 + 4 mũ 3+4 mũ 4+...+4 mũ 99 + 4 mũ 100 chia hết cho 5
Ta có: \(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{99}\left(1+4\right)\)
\(A=\left(1+4\right)\left(4+4^3+4^5+...+4^{99}\right)\)
\(A=5\left(4+4^3+4^5+...+4^{99}\right)⋮5\)
\(\Rightarrow A⋮5\)(đpcm)
CMR A=5 +5 mũ 2 +5 mũ 3+ 5 mũ 4 +...+ 5 mũ 12 chia hết cho 30 và 31
A= (5+52) + (53 + 54) +..+ (511 + 512)
A = 30.1 + 52.30 +.....+ 510.30
A = 30.(1+52+510)
Vậy chia hết cho 30