\(5x+25=-3xy+8y^2\) Tìm cặp nghiệm nguyên
Giải phương trình nghiệm nguyên :
\(5x+25=-3xy+8y^2\)
Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)
Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)
\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)
Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)
Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)
\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)
\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)
\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
\(\Rightarrow y\in\left\{-2;0;-10\right\}\)
Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn
Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn
Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn
Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)
đây ko phải câu hỏi lớp 1
5x + 25 = -3xy + 8y2
Giải phương trình nghiệm nguyên
tìm nghiệm nguyên
\(5x+25=-3xy+8y^2\)
tìm các số guyên x,y sao cho:5x+25=8y2-3xy
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tìm các cặp nghiệm nguyên x,y thỏa mãn
a) \(5x^2+y^2=17+2xy\)
b) \(3xy+x+y=4\)
a. ta có
\(4x^2+\left(x-y\right)^2=17\)
do x nguyên nên \(4x^2\in\left\{0,4,16\right\}\) tương ứng ta tìm được \(\left(x-y\right)^2\in\left\{17,13,1\right\}\)
vậy chỉ có \(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=1\end{cases}}\end{cases}}}\text{ hoặc }\hept{\begin{cases}x=-2\\\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Rightarrow\left(x,y\right)\in\left\{\left(2,1\right);\left(2,3\right);\left(-2;-1\right);\left(-2;-3\right)\right\}}\)
b. ta có \(9xy+3x+3y=12\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=13\)
từ đó \(\Rightarrow\hept{\begin{cases}3x+1=\pm1\\3y+1=\pm13\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}3x+1=\pm13\\3y+1=\pm1\end{cases}}\) vậy ta tìm được \(\left(x,y\right)\in\left\{\left(0,4\right),\left(4,0\right)\right\}\)
Tìm nghiệm nguyên của phương trình 5x^2 + 8y^2 = 20142
\(x^2=\frac{20142-8y^2}{5}\)(1)
Do x nguyên nên 20142-8y2 chia hết cho 5=> 8y2 có tận cùng là 2
y={+-2;+-3;+-7;+-8;+-12;+-13;+-17;+-18;+-22;+-23;+-27;+-28;+-32;+-33;+-37;+-38;+-42;+-43;+-47;+-48}
Thay tất cả giá trị của y vào (1) => k có giá trị nào của y thỏa mãn x nguyên
Vậy pt trên vô nghiệm
Tìm những cặp số nguyên x,y thỏa mãn
5x^2+8y^2=20412
Giải phương trình nghiệm nguyên: \(5x+25=-3xy+5y^2\)