Tìm n thuộc N sao cho A = 2005n + n2005 + 2005n chia hết cho 3
Tìm n thuộc N sao cho:
A= 2005n + 2005n +n2005 chia hết cho 3
a chia cho 153 dư 110 => a - 110 chia hết cho 153
a chia cho 117 dư 110 => a - 110 chia hết cho 117
=> a - 110 \(∈\) BC(153; 117)
153 = 32.17 ; 117 = 32.13 => BCNN (153;117) = 32.13.17 = 1989
=> a -110 \(∈\) B(1989) = {0;1989; 3978;5967;...} => a \(∈\) {110;2099;4088; ...}
Mà 2000 < a < 5000 nên a = 2099 hoặc a = 4088
Vậy...
Chúc bạn học tốt
Tìm số tự nhiên n biết: n2005 + 2005n + 2005n chia hết cho 3.
Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
ta xét;
(*)n=0=>n^2005+2005^n+2005n =0^2005+2005^0+2005x0=1+1+0=2 (không chia hết cho 3)
(*)n=1 =>n^2005+2005^n+2005n=1^2005+2005^1+2005x1=1+2005x2=4011(không chia hết cho 3)
(*)n>1 thi2 n^2005+2005^n+2005n sẽ không chia hết cho 3 Hay n=1
Tìm n sao cho :n\(\in\)N và
A = 2005n + n2005 + 2005n chia hết cho 3
Đầng cần gấp , giúp mình nhé
Giúp mik với
CMR:
a) 4n2+3n+5⋮6 (n nguyên tố lớn hơn 3)
b) n8-n6-n4+n2⋮1152 (n lẻ)
c) 2005n+60n-1897n-168n⋮2004
Mà \(125⋮5\Rightarrow\left(2n-1\right)^3+75⋮5\) mà \(75⋮5\Rightarrow\left(2n-1\right)^3⋮5\)
Vì 5 nguyên tố \(\Rightarrow2n-1⋮5\Rightarrow\left(2n-1\right)^3⋮125\) nhưng 75 \(⋮̸\)125 (vô lí)
Vậy \(4n^3-6n^2+3n+37\)\(⋮̸\)125
CMR:
2005n+60n-1897n-168n⋮2004
Đặt \(A=2005^n+60^n-1897^n-168^n\)
\(2004=4.3.167\)
2005 chia 4 dư 1 nên \(2005^n\equiv1\left(mod4\right)\)
\(1897\) chia 4 dư 1 nên \(1897^n\equiv1\left(mod4\right)\)
Tương tự: \(60^n\equiv0\left(mod4\right)\) ; \(168^n\equiv0\left(mod4\right)\)
\(\Rightarrow2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod4\right)\)
\(\Rightarrow A⋮4\)
Cũng làm như vậy, ta có:
\(2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod3\right)\)
\(\Rightarrow A⋮3\)
\(2005^n+60^n-1897^n-168^n\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)
\(\Rightarrow A⋮167\)
Mà 4, 3, 167 nguyên tố cùng nhau
\(\Rightarrow A⋮\left(4.3.167\right)\) hay \(A⋮2004\)
Tìm n thuộc N sao cho:
a) n + 6 chia hết cho n + 2
b) 2n + 3 chia hết cho n + 2
a,ta có n+6=(n+2)+4
Để n+6 chia hết cho n+2 thì 4 phải chia hết cho n+2
Suy ra n+2 là ước của 4,là các số 2,4.
Nếu n+2=2 => n=0
Nếu n+2=4 => n=2.
Vậy n=0 và n=2.
b,Ta có 2n+3=2x(n+2) -1
Để 2n+3 chia hết cho n+2 thì 1 phải chia hết cho n+2
Suy ra n+2=1 (Loại do không có n thuộc N thỏa mãn)
Vậy ko có n nào là đáp số.
a, Ta có: n+6=n+2+4
Để: n+6 chia hết cho n+2
thì: 4 phải chia hết cho n+2
Suy ra n+2 thuộc ước của 4 bằng {1;2;4}
-Nếu n+2=1 suy ra n=1-2 không thuộc N (loại)
-Nếu n+2=2 suy ra n=2-2=0 thuộc N (chọn)
-Nếu n+2=4 suy ra n=4-2=2 thuộc N (chọn)
Vậy n ={0;2}
b, Ta có: 2n+3=2(n+2)-1
Để: 2n+3 chia hết cho n+2
thì: 1 chia hết cho n+2
Suy ra n+2 thuộc ước của 1 bằng {1}
-Nếu n+2 =1 thì n=1-2 không thuộc N (loại)
Vậy không tồn tại n thỏa mãn yêu cầu bài toán.
Tìm n thuộc N, sao cho:
a) n+3 chia hết cho n-2
b)2n+9 chia hết cho n-3
c*) 3n-1 chia hết cho 3-2n
a/ Tìm x thuộc N Sao cho N + 2 chia hết n - 1
b/ Tìm x thuộc N Sao cho 2n + 7 chia hết cho n+1
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
n-1=-1=>n=0n-1=1=>n=2n-1=-3=>n=-2n-1=3=>n=4do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
n+1=1=>n=0n+1=-1=>n=-2n+1=5=>n=4n+1=-5=>n=-6do n thuộc N nên : các giá trị n la : {0;4}
a) \(\frac{n+2}{n-1}\Leftrightarrow\frac{n-1+3}{n-1}=\frac{3}{n-1}\)
Để 3 chia hết cho n - 1 thì n - 1 thuộc Ư (3)
Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
Mà n thuộc n nên loại 2 vậy n = {2;0;4}
b) \(\frac{2n+7}{n+1}=\frac{n+1+6.2}{n+1}=\frac{12}{n+1}\)
Để 4 chia hết n+1 thì n+1 thuộc Ư(12)
Ư (12) = {1;2;3;4;-1;-2;-3;-4;-12}
=> n thuộc N loại số âm.
n + 1 = 1 => n = 0
n + 1 = 2 => n = -1 (loại)
n + 1 = 3 => n = -2 (loại)
n + 1 = -12 => n = -13 (loại)
Tìm n thuộc N sao cho:
a) n+3 chia hết cho n-2
b) 2n+9 chia hết cho n-3
c) 3n-1 chia hết cho 3-2n
d) n-7 chia hết cho n-6