Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Minh Nguyệt
Xem chi tiết
Trương Việt Khôi
12 tháng 4 2018 lúc 21:19

Ta có 2xy+x-2y=4

=>2y(x-1)+x=4

=>2y(x-1)+x-1=3

=>2y(x-1)+(x-1)=3

=>(x-1).(2y+1)=3

=>x-1 và 2y + 1 la Ư(3)={-3;3;-1;1}

Trần Bảo Khánh
12 tháng 4 2018 lúc 21:20

2xy+x-2y=4

x.(2y+1)-2y=4

x.(2y+1)-(2y+1)=3

(2y+1).(x-1)=3

ta có: 3=1.3=-1.-3

lập bảng tìm x, y

thử

Vậy ...

Nguyễn Tiến Đạt
12 tháng 4 2018 lúc 21:22

ta có 2xy+x-2y=4

=> 2y(x-1)+x=4

=> 2y(x-1)+(x-1)=4-1

=>(2y+1)(x-1)=3

Do \(x,y\in Z\)=> x,y thuộc ước của 3

\(\Rightarrow x,y\in\left\{\pm1,\pm3\right\}\)

ta có bảng sau

2y+1-3-113
2y-4-202
y-2-101
x+1-1-331
x-2-420

Vậy các cặp số x,y thỏa mãn là ......

bạn tự kết luận nha

tk cho mink đi mà

Nhím Sóc TV
Xem chi tiết
Xem chi tiết
Diệu Anh
22 tháng 2 2020 lúc 8:14

(x-1)(2y-1)= 11

=> x-1 thuộc B(11) ={ 1; 11;-1;-11}

=> x thuộc{ 2; 12; 0; -10}

Sau đó thay vào tìm y nha. Tui đi tơiiii đâyy

Khách vãng lai đã xóa

cam on

Khách vãng lai đã xóa
Yêu nè
22 tháng 2 2020 lúc 9:52

Ta có  2xy-2y+x=11.

=> x ( 2y + 1 ) - ( 2y + 1) = 11

=> ( x - 1 ) ( 2y + 1 ) = 11

Mà x,y nguyên nên ta có bảng sau

x-1111-1-11
2y+1111-11-1
x2120-10
2y100-12-2
y50-6-1

Vậy các cặp số nguyên (x;y) thỏa mãn đề bài là ( 2;5) ; ( 0;-6 ) ; ( -10; - 1 ); ( 12; 0 )

K chắc

@@ Học tốt

Chiyuki Fujito
 

Khách vãng lai đã xóa
hello sun
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

Xem chi tiết
╰Nguyễn Trí Nghĩa (team...
22 tháng 2 2020 lúc 8:27

2xy-2y+x=11

=>x.(2y+1)-1.(2y+1)=12

=>(x-1).(2y+1)=12

=>12\(⋮\)x-1

=>x-1\(\in\)Ư(12)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)4;\(\pm\)6;\(\pm\)12}

+)Ta có bảng:

x-1-11-22-33-44-66-1212
2y+1-1212-66-44-33-22-11
x0\(\in\)Z2\(\in\)Z-1\(\in\)Z3\(\in\)Z-2\(\in\)Z4\(\in\)Z-3\(\in\)Z5\(\in\)Z-5\(\in\)Z7\(\in\)Z-11\(\in\)Z13\(\in\)Z
y\(\frac{-13}{2}\)\(\notin\)Z\(\frac{11}{2}\)\(\notin\)Z\(\frac{-7}{2}\text{​​}\)\(\notin\)Z\(\frac{5}{2}\)\(\notin\)Z\(\frac{-5}{2}\)\(\notin\)Z\(\frac{3}{2}\)\(\notin\)Z-2\(\in\)Z1\(\in\)Z\(\frac{-3}{2}\)\(\notin\)Z\(\frac{1}{2}\)\(\notin\)Z-1\(\in\)Z0\(\in\)Z

Vậy (x,y)\(\in\){(-3;-2);(5;1);(-11;-1);(13;0)}

Chúc bn học tốt

Khách vãng lai đã xóa

theo minh buoc 1 la nhom 2xy voi 2y

Khách vãng lai đã xóa
╰Nguyễn Trí Nghĩa (team...
22 tháng 2 2020 lúc 8:42

Làm theo bạn cx đc có nhiều cách nhóm lắm

Chúc bn học tốt

Khách vãng lai đã xóa
Pham Van Hung
Xem chi tiết

\(PT\Leftrightarrow y^2\left(x^2-6\right)-2xy-x^2=0\)

Xét \(\Delta'=x^2+x^2\left(x^2-6\right)\)\(=x^4-5x^{^2}\)

Do x,y nguyên nên \(\Delta'\)là số chính phương

Đặt \(x^4-5x^2=k^2\left(k\in N\right)\)

\(\Leftrightarrow x^2\left(x^2-5\right)=k^2\)

\(\Rightarrow x^2-5\)là số chính phương

Đặt \(x^2-5=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=5\)

Xét TH là tìm được nghiệm nhé :P

Khách vãng lai đã xóa
Đặng Thu Hường
Xem chi tiết
Huyền Nhi
8 tháng 1 2019 lúc 23:18

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

tth_new
9 tháng 1 2019 lúc 8:21

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

Nguyễn Tuấn Minh
Xem chi tiết
Lê Luyện
22 tháng 10 2017 lúc 22:08

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)

chu minh ngọc
Xem chi tiết
Đặng Tú Phương
5 tháng 3 2020 lúc 11:16

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

Khách vãng lai đã xóa
chu minh ngọc
5 tháng 3 2020 lúc 15:00

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0

Khách vãng lai đã xóa