Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)>=2
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
1.a)CMR từ tỉ lệ a/b=c/d (a khác b và -b,c khác d và -d) ta có tỉ lệ thức a+b/a-b = c+d/c-d.
b)CMR nếu có a+b/a-b = c+d/c-d (a,b,c,d khác 0) thì a/b=c/d.
Cho a,b,c,d>0. CMR :\(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
Làm tương tự với 3 phân số còn lại và cộng vế với vế
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)
Làm tương tự với 3 phân số còn lại và cộng vế với vế
Cho a,b,c,d>0. CMR: 1 <\(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{b+c+d}\)+\(\dfrac{c}{c+d+a}\)+\(\dfrac{d}{d+a+b}\)< 2
1/ cho a,b,c,d khác 0 sao cho a2+b2=c2+d2. CMR: a+b+c+d là hợp số
2/ cho a,b,c,d khác 0 sao cho a.b=c.d. CMR: a+b+c+d là hợp số
cho a,b,c,d >0 . CMR : (a-d)/(d+b) + (d-b)/(b+c) + (b-c)/ (c + a) + (c-a)/(a+d) >= 0
\(VT=\frac{a+b-\left(b+d\right)}{d+b}+\frac{\left(d+c\right)-\left(b+c\right)}{b+c}+\frac{\left(b+a\right)-\left(a+c\right)}{c+a}+\frac{\left(c+d\right)-\left(a+d\right)}{a+d}\)
\(VT=\frac{a+b}{d+b}-1+\frac{\left(d+c\right)}{b+c}-1+\frac{\left(b+a\right)}{c+a}-1+\frac{\left(c+d\right)}{a+d}-1\)
\(VT=\left(a+b\right).\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(d+c\right).\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
Chứng minh đc bđt sau: Với x; y > 0 ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Áp dụng ta có: \(VT\ge\left(a+b\right).\frac{4}{d+b+a+c}+\left(d+c\right).\frac{4}{b+c+a+d}-4\ge\frac{4.\left(a+b+c+d\right)}{a+b+c+d}-4=0\)
=> ĐPCM
cho a,b,c,d >0
cmr: a-d/d+b+d-b/b+c+b-c/c+a+c-a/a+d>=0
Cộng 4 vào vế trái nhá
\(VT+4=\left(\dfrac{a-d}{d+b}+1\right)+\left(\dfrac{d-b}{b+c}+1\right)+\left(\dfrac{b-c}{c+a}+1\right)+\left(\dfrac{c-a}{a+d}+1\right)\)
\(=\dfrac{a+b}{d+b}+\dfrac{d+c}{b+c}+\dfrac{a+b}{c+a}+\dfrac{c+d}{a+d}\)
\(=\left(a+b\right)\left(\dfrac{1}{d+b}+\dfrac{1}{c+a}\right)+\left(c+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)\)
\(\ge\left(a+b\right).\dfrac{4}{a+b+c+d}+\left(c+d\right).\dfrac{4}{a+b+c+d}\)
\(=\left(a+b+c+d\right).\dfrac{4}{a+b+c+d}\)\(=4\)
\(\Rightarrow VT\ge0=VP\)(Đpcm)
Cho a,b,c,d > 0 và abcd=1.CMR: a^2 + b^2 + c^2 + d^2 + a(b+c) + b(c+d) + d(c+a) >= 10
Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)
\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)
\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)
=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)
Dấu "=" xảy ra khi a=b=c=d=1
Cho a,b,c,d>0. CMR:
a/b+c + b/c+d + c/d+a + d/a+b > hoặc = 2