Cho: a/b=b/c=c/d.Chứng minh rằng:(a+b + c / b + c + d)^3=a/d
Cho a/b=b/c=c/d.Chứng minh rằng (a+b+c/b+c+d)^3=a/d
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Cho: a/b=b/c=c/d.Chứng minh rằng:(a+b + c / b + c + d)^3=a/d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Rightarrow\dfrac{a+b+c}{b+c+d}\times\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}\)
=> điều phải chứng minh
\(\text{cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2 l}\)cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2
cho a/c=c/b=b/d.chứng minh rằng a^3+c^3-b^3/c^3+b^3-d^3=a/d
Đặt đk đầu của đề bài bằng k rồi rút a, b,c và thay vào VT, VP.
mình chưa hiểu ý của bạn lắm Hoàng Thị Ngọc Anh
cho a;b;c;d.Chứng minh rằng 1< a/(a+b+c) + b/(b+c+d) + c/(c+d+a) + d/(d+a+b) <2
Ta thấy : b/a = d/c ⇒ad = bc (1)
Ta có: (a+2c)(b+d)=(a+c)(b+ad)
<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd
<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0
<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng
=>ĐFCM
Cho 2 phân số bằng nhau a/b và c/d.Chứng minh rằng
a, a+b/b = c+d/d
b, a-b/b = c-d/d
a) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Cho a/b=c/d.Chứng minh rằng a-b/c-d=a+b/c+d.Giúp mình với ạ.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c+d}\left(đpcm\right)\)
với \(\hept{\begin{cases}a\ne b\\c\ne d\end{cases}}\)
Cho phân số a/b=c/d.Chứng minh rằng a/b=c/d=a+c/b+d=a-c/b-d.
Giúp mình nha , mình đang cần gấp .
Áp dụng tính chất dãy ti số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
=> đpcm