b = 2+2^2 +.......+2 ^ 90 và C = 3+2^90 so sánh
So sánh 2 mũ 15o và 3 mũ 90
\(2^{150}=\left(2^5\right)^{30}=32^{30}\)(1)
\(3^{90}=\left(3^3\right)^{30}=27^{30}\)(2)
Từ (1),(2)=>\(2^{150}>3^{90}\) hay \(32^{30}>27^{30}\)
\(2^{150}=\left(2^5\right)^{30}=32^{30}\)
\(3^{90}=\left(3^3\right)^{30}=27^{30}\)
mà 32>27
nên \(2^{150}>3^{90}\)
so sánh
a) 2^135 và 3^90
b) 4^75 và 3^100
c)4^100 và 9^75
a) \(2^{135}=2^{3.45}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=3^{2.45}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\)nên \(2^{135}< 3^{90}\)
b) \(4^{75}=4^{3.25}=\left(4^3\right)^{25}=64^{25}\)
\(3^{100}=3^{4.25}=\left(3^4\right)^{25}=81^{25}\)
Vì \(64^{25}< 81^{25}\)nên \(4^{75}< 3^{100}\)
c) \(4^{100}=4^{4.25}=\left(4^4\right)^{25}=256^{25}\)
\(9^{75}=9^{3.25}=\left(9^3\right)^{25}=729^{25}\)
Vì \(256^{25}< 729^{25}\)nên \(^{4^{100}< 9^{75}}\)
Bt : So sánh :
A, 2^27 và 3^18
B, 3^225 và 5^150
C, 99^20 và 9999^10
D, 2^90 và 5^36
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801< 9999\)nên \(9801^{10}=9999^{10}\)
Vậy \(99^{20}< 9999^{10}\)
a, 2^27 = 2^3.9 = 8^9
3^18 = 3^2.9 = 9^9
vì 8<9 => 8^9 < 9^9 => 2^27 < 3^18
So sánh:
a) 11*3^11 và 3^13
b) 89^2 và 88*90
a)
11*311 = 1948617
313 = 1594323
vì 1948617 > 1594323 nên 11*311 > 313
b) 892 = 7921
88*90 = 7920
vì 7921 > 7920 nên 892 > 88*90
So sánh 2 mủ 135 và 3 mủ 90
Ta có:
\(2^{135}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\) nên \(2^{135}< 3^{90}\)
Vậy \(2^{135}< 3^{90}\)
\(2^{135}\) và \(3^{90}\)
\(2^{135}=2^{3.45}=\left(\left(2^3\right)^{45}\right)=8^{45}\)
\(3^{90}=3^{2.45}=\left(\left(3^2\right)^{45}\right)=9^{45}\)
Vì \(8< 9\) nên \(8^{45}< 9^{45}\) hay \(2^{135}\)\(< 3^{90}\)
so sánh
a) 340 và 1121
b) 2195 và 3130
c) 290 và 536
a) 3^40= 3^4.10=(3^4)10=81^10
11^21> 11^20=11^2.10=(11^2)10=121^10
→ 3^40< 11^21
b) 2^195=2^15.13=(2^15)13=32768^13
3^130=3^10.13= (3^10)13=59049^13
→2^195<3^130
c) 2^90=2^5.18=(2^5)18= 32^18
5^36=5^2.18=(5^2)18=25^18
→2^90>5^36
So sánh số a và b, biết a=3/2 + 7/6 +13/12+ ...+ 91/90 và b= 98/11
A = \(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{91}{90}+\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+...+\left(1+\frac{1}{90}\right)\)
\(=\left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{9.10}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)+\left(1+1+1+...+1\right)\)(9 số hạng 1)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)+1.9\)
\(=\left(1-\frac{1}{10}\right)+9=10-\frac{1}{10}=\frac{99}{10}>\frac{98}{11}\)
a=1+1/1.2+1+1+1/2.3+....+1+1/9.10
a=1+1+...+1(9 chữ số 1)+1/1-1/2+1/2-1/3+...+1/9-1/10
a=9+1-1/10
a=9+9/10=9+0.9=9.9
b=98/11<98/10=9.8<9.9
=>vậy a>b
So sánh: a) √6+√12+√30+√56 và 19
b) √2+√6+√30+√19+√90 và 19
c) √2+√6+√30+√90 và 19
So sánh
a) 2^100 và 10^30
b) 2^90 và 5^36