Ta có:
\(2^{135}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\) nên \(2^{135}< 3^{90}\)
Vậy \(2^{135}< 3^{90}\)
\(2^{135}\) và \(3^{90}\)
\(2^{135}=2^{3.45}=\left(\left(2^3\right)^{45}\right)=8^{45}\)
\(3^{90}=3^{2.45}=\left(\left(3^2\right)^{45}\right)=9^{45}\)
Vì \(8< 9\) nên \(8^{45}< 9^{45}\) hay \(2^{135}\)\(< 3^{90}\)