\(S=2^2+4^2+...+20^2\)
\(=1^2.2^2+2^2.2^2+...+2^2.10^2\)
\(=\left(1^2+2^2+...+10^2\right).2^2\)
\(=385.4=1540\)
Vậy S = 1540
Giải:
Đặt \(A=1^2+2^2+...+10^2=385\)
\(\Rightarrow A.2^2=1^2.2^2+2^2.2^2+...+10^2.2^2=385.2^2\)
\(\Rightarrow A.2^2=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(10.2\right)^2=385.2^2\)
\(\Rightarrow A.2^2=\left(2\right)^2+\left(4\right)^2+...+\left(20\right)^2=385.2^2\)
\(\Rightarrow A.2^2=S=385.2^2\)
\(\Rightarrow S=385.4\)
\(\Rightarrow S=1540\)
Ta có: 12 + 22 + 32 + ... + 102 = 385
S = 22 + 42 + 62 + ... + 202
= (1.2)2 + (2.2)2 + (3.2)2 + ... + (10.2)2
= 12.22 + 22.22 + 32.22 + ... + 102.22
= 22 (12 + 22 + 32 + ... + 102)
= 4.385 = 1540
Ta có : S = \(2^2\) + \(4^2\) + \(6^2\) + ...... + \(20^2\)
= \(\left(1.2\right)^2\) + \(\left(2.2\right)^2\) + \(\left(2.3\right)^2\) + ......... + \(\left(2.10\right)^2\)
= \(1^2\) . \(2^2\) + \(2^2\) . \(2^2\) + \(2^2\) . \(3^2\) + ......... + \(2^2\) . \(10^2\)
= \(2^2\) ( \(1^2\) + 2\(^2\) +\(3^2\) + ........... + \(10^2\) )
= 4 . 385
= 1540
Vậy S = 1540