Cho hình thoi ABCD có B= 60 độ. 1 đường thẳng qua D không cắt hình thoi nhưng cắt các đường thẳng AB và BC lần lượt tại E và F. Gọi M giao điểm AF, CE. Chứng minh AD tiếp xúc với đường tròn ngoại tiếp tam giác MDF.
Cho hình thoi ABCD có góc B = 60 độ. Một đường thẳng d không cắt hình thoi nhưng cắt các đường thẳng AB, BC lần lượt tại E, F. Gọi M là giao điểm của AF và CE. Chứng minh AC^2 = AM.AF
1) Cho hình thoi ABCD có B= 60 độ. 1 đường thẳng qua D không cắt ...
cho hình thoi ABCD có \(\widehat{B}=60^0\) .Đường thẳng qua D cắt AB,AC kéo dài lần lượt tại E và F.gọi M là giao điểm của AF và EC.Chứng minh AD tiếp xúc với đường tròn ngoại tiếp MDF
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
1, Cho tam giác ABC có I là trung điểm của cạnh BC. Qua I kẻ đường thẳng d cắt AB,AC lần lượt tại M và N . Kẻ dường thẳng d' cắt AC,AB lần lượt tại E,F . CMR : IE=IF
2, cho hình thoi ABCD có góc B bằng 60 độ . Một đường thẳng đi qua D cắt đường kéo dài các cạnh AB,BC lần lượt tại E và F. Gọi M là giao điểm của AF, CE . Chứng minh rằng : AD^2 = AM.AF
Cho hình thoi ABCD có \(\widehat{B}=60\). Một đường thẳng d đi qua D không cắt các cạnh hình thoi và cắt các đường thẳng BA, BC lần lượt tại điểm E và F. Gọi M là giao điểm của 2 đường thẳng AF và CE. Chứng minh rằng:
a/ Tam giác AEC đồng dạng với tam giác CAF.
b/ \(AD^2=AM.AF\)
Cho mình hỏi hai câu này tí ạ :33
Câu 4: Cho hình bình hành ABCD (AC > BD). Gọi E, F lần lượt là hình chiếu của C trên các đường thẳng AB, AD. Gọi H là hình chiếu của B trên AC. Chứng minh rằng: a) ∆HAB ∆EAC và AB. AE = AH. AC b) AC! = AB. AE + AD. AF
Câu 5: Cho hình thoi ABCD có ABC 6 = 60°. Một đường thẳng đi qua đỉnh D không cắt hình thoi nhưng cắt các đường thẳng AB, BC lần lượt tại E, F. Gọi M là giao điểm của AF, CE. Chứng minh rằng: a) ∆ADE ∆CFD và ∆AEC ∆CAF. b) AD! = AM. AF.
Mng có thể giải chi tiết kèm cả hình hộ mình đc k ạ :33
Cái chỗ AB! và AD! nghĩa là AB2 và BD2 đấy ạ
cho hình thoi ABCD có B=60. một đường thẳng đi qua D không cắt hình thoi và cắt các đường thẳng AB,BC ở E,F. M là giao điểm của 2 đường thẳng AF và CE. chứng minh AD tiếp xúc với đường tròn ngoại tiếp tam giác MDF
cho hình thoi ABCD có B=60. một đường thẳng đi qua D không cắt hình thoi và cắt các đường thẳng AB,BC ở E,F. M là giao điểm của 2 đường thẳng AF và CE. chứng minh AD tiếp xúc với đường tròn ngoại tiếp tam giác MDF