Chứng minh tổng sau là số chính phương
C=11...1(2017cs1)*22...2(2017cs2)*5
Nhanh lên nhé mọi người mình k cho
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Giả sử \(2n=a^2+b^2\)(a,b∈N).
⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)
Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.
⇒ \(\dfrac{a+b}{2}\) và \(\dfrac{a-b}{2}\) đều là số nguyên
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
CÂU 1 : chứng minh (11..1211...1) là hợp số
số có dạng 2017cs1 rồi đến cs 2 tiếp theo là 2017cs1
CÂU 2: cho p là số nguyên tố > 3. Hỏi p2 + 2018 là số nguyên tố hay hợp số
CÂU 3: cho p & p+8 là số nguyên tố > 3.Hỏi p + 100 là số nguyên tố hay hợp số
CÂU 4: tìm số tự nhiên nhỏ nhất có :
a,7 ước
b,15 ước
Mọi người ơi cho mình hỏi:Số bé nhất có một chữ số mà tổng các chữ số bằng 22.Là số nào?Mọi người giải giúp mình nhé!
số bé nhất có 1 chữ số mà tổng các chữ số bằng 22 ????? đề có sai ko b?
Đề sai rồi bạn.
Chứng minh rằng các biểu thức sau đều là số chính phương: A=11....1-22....2
cho tổng A = 1+3+5+....+(2n+1), tổng B = 2+4+6+8+....+2n ( n ϵ N)
a) Tính số hạng của tổng A , số hạng của tổng B
b) Chứng tỏ rằng : với mọi số tự nhiên n thì tổng A là số chín phương
c) Tổng B có thể là số chín phương không ? Vì sao ?
a: Số số hạng của A là:
(2n+1-1):2+1=n+1(số)
Số số hạng của B là;
(2n-2):2+1=n(số)
b: A=(2n+1+1)(n+1)/2=(n+1)^2 là số chính phương
c: C=(2n+2)*n/2=n(n+1) chỉ có thể là số chính phương khi n=0 thôi
Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Tks mọi người ạ ^^
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
.....
\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}\)
chứng minh A=11...11 - 22...22 (có 2n chữ số 1 và n chữ số 2) là một số chính phương
giúp tui với
chứng minh tổng 420+421+422+423⋮5
nhanh nha mình cần gấp
thanks
\(4^{20}+4^{21}+4^{22}+4^{23}=4^{20}\left(1+4+4^2+4^3\right)=4^{20}\cdot85⋮5\left(85⋮5\right)\)
\(=5\cdot\left(4^{20}+4^{22}\right)⋮5\)