tìm giá trị nhỏ nhất của biểu thức:
B=|x−2010|+|x−2011|+|x−2012|
Tìm giá trị nhỏ nhất của biểu thức M = 2012 - 2011 :(2010 - x ) với x € N
Để M có giá trị nhỏ nhất thì
2012-2011:(2010-x)=1
Suy ra : 2011 : (2010-x) =2011
2010 -x = 1
x= 2009
Tìm giá trị nhỏ nhất của biểu thức:
A= (x - 2)2 + | y - x | + 3
B= | x + 5| + 5
C= \(\dfrac{2011}{2012-\left|x-2010\right|}\)
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
Tìm giá trị nhỏ nhất của A=/x-2010/+/x-2012/+/y-2013/+/x-2014/+2011
Tìm giá trị nhỏ nhất của B=2011/2012-|x-2010|
Tìm giá trị nhỏ nhất của các biểu thức:
a) A = I x - 2011 I + I x - 2012 I
b) B = I x - 2010 I + I x - 2011 I + I x- 2012 I
c) C = I x - 1 I + I x - 2 I + ............ + I x - 100 I
Tìm giá trị nhỏ nhất của biểu thức: B=\(\frac{2011}{2012-\left|x-2010\right|}\)
Cần lời giải gấp ----
đk : \(\left|x-2010\right|\ne2012\)
\(B=\frac{2011}{2012-\left|x-2010\right|}\)
có : \(2011>0\)
để B đạt gtnn thì 2012 - |x - 2010| lớn nhất
mà |x - 2010| > 0
=> 2012 - |x - 2010| = 1
=> |x - 2010| = 2011
=> x - 2010 = 2011 hoặc x - 2010 = -2011
=> x = 4021 hoặc x = -1
Tìm giá trị nhỏ nhất của biểu thức:
A= /x-2010/ + (y+2011) 2010 +2011 và giá trị của x, y tương ứng
vì |x-2010|\(\ge\)0
(y+2011) 2010\(\ge\)0
=>|x-2010|+(y+2011) 2010\(\ge\)0
=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011
dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0
<=>x=2010 và y=-2011
vậy Amin=2011 khi x=2010 và y=-2011
bài 1 : ko tính giá trị cụ thể hayc so sánh hai biểu thức
a ) C = 2010 . 2012 và D = 2011 . 2011
bài 2 : Chia một số cho 60 thì được số dư là 37 . Nếu chia số đó cho 15 thì được số dư là bao nhiêu ?
bài 3 : tìm giá trị nhỏ nhất của biểu thức M = 2012 - 2011 : ( 2012 - x ) với x thuộc N
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011
tìm giá trị nhỏ nhất của biểu thức sau: |x+2011|+|x+2012|