\(choS=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}+2^{11}\)
chứng tỏ rằng S chia hết cho 3
Chứng tỏ rằng
9^2.n+1 . 7^4.k chia hết cho 10
2^11 + 2^12 chia hết cho 3
2+2^2+2^3+2^4+2^5+2^6+2^7+2^8 chia hết cho 3
Giúp mik vs mai phải nộp bài rùi
b: \(=2^{11}\left(1+2\right)=2^{11}\cdot3⋮3\)
c: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^7\left(1+2\right)\)
\(=3\left(2+2^3+...+2^7\right)⋮3\)
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
Chứng tỏ rằng :
a. ( 10^(0)+8:9
b. (1532+2001) chia hết cho 2
c. (10^(0)+5^(3) chia hết cho 3 và 9
d. (11^(1)+11^(2)+11^(3)+...+11^(7)+11^(8) chia hết cho 12
e. (7+7^(2)+7^(3)+7^(4) chia hết cho 50
f. (3+3^(2)+3^(3)+3^(4)+3^(5)+3^(6) chia hết cho 13
Bài 1, Thực hiện phép tính
a. 100 - [ 75 -( 7 - 2 )^2]
b. (2^3 : 9^4 + 9^3 × 45) : (9^2 ×10 - 9^2)
c. (20 × 2^4 + 12 × 2^4 - 48 × 2^2) : 8^2
d. 25 × 8^3 - 23 × 8^3
e. 5^4 - 2 × 5^3
g. 600:{ 450 : [450 - (4 × 5^3 - 2^3 ×5^2)]}
Bài 2, Tìm x
x + 5 × 2 - ( 32 - 16 × 3 : 6 - 15 ) = 0
Bài 3,Tìm những số tự nhiên x để
a. [( x+2)^2 + 4 ] chia hết cho (x + 2 )
b. [( x + 15)^2 - 42 ] chia hết cho ( x + 15 )
4, Cho 3 số tự nhiên a,b,c . Trong đó a và b là các số khi chia cho 5 dư 3, còn c chia cho 5 dư 2
a, Chứng tỏ mỗi tổng ( hiệu sau )
a + b; b + c; a - b đều chia hết cho 5
b, Chứng tỏ mỗi tổng ( hiệu sau )
5, Chứng tỏ rằng
a, 8^10 - 8^9 - 8^8 chia hết cho 55
b, 7^6 - 7^5 - 7^4 chia hết cho 11
c, 81^7 - 27^9 - 9^3 chia hết cho 45
d, 10^9 + 10^8 + 10^7 chia hết cho 555
Cho A= 1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11. Chứng minh rằng A chia hết cho 9
*987435879876********-=-==-*9*-*==*87866544
Tìm x
a. (x-14) :2= 24 - 3
b x572 =x
Chứng tỏ M={1+2+22+...+211 } chia hết cho 9
Chứng tỏ S={ 3 + 32 +33 +.....+ 39 }chia hết cho 13
Chứng tỏ M={ 2+ 22 + 23+....+210 } chia hết cho 3
Chứng tỏ A= { 7+ 72 + 73 +.....+78 } chia hết cho 5
giúp mình nhé ^-^
Toán lớp 6
a) (x-14):2=24-3
(x-14):2 = 13
x-14 = 13.2
x-14 = 26
x = 26 + 14
x = 40
b) x572 = x <=> x = 1 hoặc 0
a, b làm như trên nha, còn mấy bìa còn lại :
M=1+2+22+...+211
M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)
M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)
M = 63 + 26.63
M = 63 ( 1+ 26)
M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9
S=3 + 32 +33 +.....+ 39
S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
S= 3. 13 + 3^4.13 + 3^7.13
S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13
M= 2+ 22 + 23+....+210
M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3
=> M chia hết cho 3
A= 7+ 72 + 73 +.....+78
A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
A= 7. 400 + 7^5 . 400
A = 400( 7+7^5)
A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5
a) Cho S= 1+2+22+23+24+25+26+27+28+29
Chứng tỏ rằng S chia hết cho 3
b) Cho A= 22010+22011+22012+22013+22014+22015+22016+22017
Chứng tỏ rằng A chia hết cho 3
c) Cho B= 3+32+33+34+35+36+37+38+39
Chứng tỏ rằng S chia hết cho 13
Chỉ mình cách làm bài này nha mọi người
Đề đúng là như thế này nhé
a) Cho S= 1+2+22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
Chứng tỏ rằng S chia hết cho 3
b) Cho A= 22010 + 22011 + 22012 + 22013 + 22014 + 22015 + 22016 + 22017
Chứng tỏ rằng A chia hết cho 3
c) Cho B= 3 + 32 + 33 + 34 + 35 + 36 +3 7 + 38 + 39
Chứng tỏ rằng S chia hết cho 13
: Cho S = 1 + 2 + 2^2 + 2^3+ 2^4+ 2^5 + 2^6+2^7. Chứng tỏ rằng S chia hết chia hết cho 3 làm sao vậy mn
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=\left(1+2\right)\left(1+2^2+2^4+2^6\right)\)
\(\Rightarrow S=3\left(1+2^2+2^4+2^6\right)⋮3\)
Tìm x
a. (x-14) :2= 24 - 3
b x572 =x
Chứng tỏ M={1+2+22+...+211 } chia hết cho 9
Chứng tỏ S={ 3 + 32 +33 +.....+ 39 }chia hết cho 13
Chứng tỏ M={ 2+ 22 + 23+....+210 } chia hết cho 3
Chứng tỏ A= { 7+ 72 + 73 +.....+78 } chia hết cho 5
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).