6^3+3.6^2+3^3 phan -13
A 4^2 . 4^3 phan 2^10
B 6^3+3.6^2+3^3 phan -1^3
C (-39)^4 : 13^4
a )
\(\frac{4^2.4^3}{2^{10}}=\frac{4^5}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)
b )
\(\frac{6^3+3.6^2+3^3}{\left(-1\right)^3}=\frac{6^2.\left(6+3\right)+27}{-1}=\frac{36.9+27}{-1}=\frac{351}{-1}=-351\)
c )
\(\frac{\left(-39\right)^4}{13^4}=\frac{39^4}{13^4}=\frac{\left(13.3\right)^4}{13^4}=\frac{13^4.3^4}{13^4}=3^4\)
~
\(\dfrac{6^3+3.6^2+3^3}{-13}\)
=?
\(\dfrac{6^3+3\times6^2+3^3}{-13}=\dfrac{2^3\times3^3+3\times2^2\times3^2+3^3}{-13}\)
\(=\dfrac{2^3\times3^3+2^2\times3^3+3^3}{-13}=\dfrac{3^3\times\left(2^3+2^2+1\right)}{-13}\)
\(=\dfrac{3^3\times13}{-13}=-9\)
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}\)
\(=\dfrac{216+3\cdot36+27}{-13}\)
\(=\dfrac{216+108+27}{-13}\)
\(=\dfrac{241}{-13}\)
\(\dfrac{6^3+3\times6^2+3^3}{-13}=\dfrac{2^3\times3^3+2^2\times3^3+3^3}{-13}=\dfrac{3^3\times\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\times13}{-13}=-27\)
6^3+3.6^2+3^3/-13
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-1.13}=\frac{27.13}{-1.13}=-27\)
tính (6^3+3.6^2+3^3)/13
=(216+3.36+27):13
=(216+108+27):13
=(324+27):13
=351:13
=27
6^3+3.6^2+3^5/-13
\(\dfrac{6^3+3\cdot6^2+3^5}{-13}=\dfrac{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^5}{-13}\)
\(=\dfrac{3^3\left(2^3+2^2+3^2\right)}{-13}=\dfrac{3^3\cdot21}{-13}=\dfrac{-567}{13}\)
tính
a) A = \(\dfrac{6^3+3.6^2+3^3}{-13}\)
b) B =\(\dfrac{2.8^4.27^2+4.6^9}{2^3.6^7+2^7.40.9^4}\)
c) C=\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^{16}.6^{19}-7.2^{29}.27^6}\)
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
(63+3.62+33) /(-13) = ?
\(\frac{6^3+3.6^2+3^3}{-13}\)
\(\frac{6^3+3\cdot6^2+3^3}{-13}\)
\(=\frac{2^3\cdot3^3+3\cdot3^2\cdot2^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{27\cdot13}{-13}\)
\(=-27\)
Câu 2: Tính
C = \(\dfrac{6^3+3.6^2+3^3}{13}\)
D = \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)