Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
3.Bùi Hoàng Anh
Xem chi tiết
Long Sơn
13 tháng 11 2021 lúc 15:50

C

Amelinda
13 tháng 11 2021 lúc 15:50
Amelinda
13 tháng 11 2021 lúc 15:50

C

Nguyễn Vũ Hà Anh
Xem chi tiết
Good boy
24 tháng 11 2021 lúc 15:54

D

Đinh Minh Đức
24 tháng 11 2021 lúc 15:55

D

Rin•Jinツ
24 tháng 11 2021 lúc 15:55

D

Lê Huy Hoàng
Xem chi tiết
Akai Haruma
30 tháng 12 2019 lúc 15:45

Lời giải:

a)

Ta có:

\(ab-\frac{a^2+b^2}{2}=\frac{2ab-(a^2+b^2)}{2}=-\frac{a^2+b^2-2ab}{2}=-\frac{(a-b)^2}{2}\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow ab\leq \frac{a^2+b^2}{2}\) (đpcm)

b) Ta có:

\(ab-\left(\frac{a+b}{2}\right)^2=\frac{4ab-(a+b)^2}{4}=-\frac{a^2+b^2-2ab}{4}=-\frac{(a-b)^2}{4}\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow ab\leq \left(\frac{a+b}{2}\right)^2\) (đpcm)

c) Sửa đề: Lớn hơn hoặc bằng $(\geq)$ chứ không phải lớn hơn nha.

Ta có:

\((a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac\)

\(=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=\frac{(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)}{2}\)

\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0, \forall a,b,c\in\mathbb{R}\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\) (đpcm)

Dấu "=" của cả 3 phần xảy ra khi các biển bằng nhau.

Khách vãng lai đã xóa
Nguyễn Hải Hoàng
Xem chi tiết
kudo shinichi
5 tháng 8 2017 lúc 15:14

243.78-243.56

=243.(78-56)

=243.22

=5346

❤Firei_Star❤
4 tháng 5 2018 lúc 19:43

5346 nha bạn

Vương Nguyên Hạ
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Lương Đại
13 tháng 1 2022 lúc 19:40

Thiếu B nha bn

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 13:50

a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)

=>\(\widehat{A}\simeq50^0\)

b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)

=>\(25+64-BC^2=40\)

=>\(BC^2=49\)

=>BC=7

KI RI TO
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:15

a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của ΔABC)

Do đó: ΔBAD=ΔBED(Cạnh huyền-góc nhọn)

Suy ra: DA=DE

Trọng Phúc Võ
Xem chi tiết
Đỗ Ngọc Hải
26 tháng 12 2018 lúc 20:12

Cậu thậc thú zị :v

một câu hỏi rất đáng khen ,.. very good!

Nguyễn Minh Vũ
26 tháng 12 2018 lúc 20:16

Thiên tài toán học đây rồi