Cho S=2+4+6+...+100. Tính tổng S.Từ đó tính tổng các chữ số của S.
Cho tổng S= 1 + 31 + 32 + 33 +... + 330.Tìm chữ số tận cùng của S.Từ đó suy ra S không phải là số chính phương.
\(S=1+3^1+3^2+3^3+...+3^{30}\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=3^{31}-1\)
\(2S=3^{4.7+3}-1\)
\(2S=81^7.27-1\)
\(2S=\overline{......1}.27-1\)
\(2S=\overline{......7}-1=\overline{......6}\)
\(S=\overline{........3}\)
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
cho tổng S=1+3+32+33+...+330
tìm chữ số tận cùng của S.Từ đó ta suy ra Skhong phải là số chính phương
S=1+3+32+...+330
3S= 3+32+33+...+331
2S=331-1
331=34kx33=...1x...7=....7
=> chữ số tận cùng của 2S =...7-1=...6
=> chữ số tận cùng của S là ...8 hoặc...3 (ko là SCP)
Ta có S = 1 + 3 + 32 + 33 + .... + 330
3S = 3 + 32 + 33 + 34 + .... + 331
3S - S = (3 + 32 + 33 + 34 + ..... + 331) - (1 + 3 + 32 + 33 + ..... + 330)
2S = 331 - 1
Lại có 3311 = (34)7 x 33 = (........1)7 x 27 = (.......1) x 27 = (....7) => 2S có c/s tận cùng là 7 - 1 = 6
=> S có c/s tận cùng là 3 hoặc 8 mà số chính phương ko có tận cùng là 3 hoặc 8 => S ko phải số chính phương
ấn đúng cho mk nha các bạn!!!
1Tính : S = 2 + 4 + 6 +... + 100
2 Tính số phần tử của tập hợp các số tự nhiên có ba chữ số và tính tổng các chữ số đó
3 Trên X thuộc N biết:
a,1 + 2 + ... + X =55
b, 2 + 4 + ...+ XX =110
c,1 + 3 + 5 +... + X =56
1 số các số hạng là:(100-2):2+1=50 Tổng các số đó là:(100+2).50:2=2550 2 các số có 3 c/s là:100,101,102,..........,999 số phần tử là:(999-100):1+1=900 tổng là:(999+100).900:2=494550 3 là mk đag bận nên k thể trloi bn mog bn thông cảm khi nào rảnh thì mk sẽ giải hộ bn nha mk mog là bn lm đúng hết bài
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các chữ số 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn sao cho mỗi số đó có tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
Bài 2: a) Tính tổng các số lẻ có hai chữ số b) Tính tổng các số chẵn có hai chữ số c) Tính: S = 1 + 3 + 5 +... + 2n +1 với (n € N) d) Tính: S = 2 + 4 + 6 +...+ 2n với (n € N*)
Kí hiệu S(n) là tổng các chữ số tự nhiên n, VD:20+6=21 S(n)=3
Đặt A = 2100. Tính S(S(S(S(A))))
Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9
( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )
Do đó ta có:
\(A-S\left(A\right)⋮9\)
\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)
\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)
=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)
Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34
=> \(S\left(A\right)< 34.9=306\)
=> \(S\left(S\left(A\right)\right)< 3.9=27\)
=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)
Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)
=> \(A-7⋮9\)(3)
Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16
=> S(S(S(S(A)))) = 7
:)))) . Bài này thú vị quá! <3
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có tổng của ba chữ số hàng đơn vị, hàng chục, hàng trăm lớn hơn tổng của các chữ số còn lại 3 đơn vị
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Cho S= 1+2+3+...+100
a) Tính S
b) Nếu lấy ra 2 số hạng bất kì của tổng S và thay vào đó là tổng của chúng.Hãy cho Biết lúc này giá trị của tổng là số chẵn hay số lẻ
a) S=45×10+450+90×45+100=5050
b) nếu lấy ra số cuối và 1 số 5 bất kì thì là số lẽ. Các trường hợp khác là số chẵn
Cho tập hợp S = {1;2;3;4;5;6}. Gọi M là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lấy từ S sao cho tổng của các chữ số hàng đơn vị , hàng chục và hàng trăm lớn hơn tổng các chữ số còn lại là 3. Tính tổng của các phần tử của tập hợp M.
A. T = 11003984
B. T = 36011952
C. T = 12003984
D. T = 18005967
Chọn B
Gọi số cần tìm thỏa mãn điều kiện bài toán là a b c d e f ¯ trong đó a,b,c,d,e,f ∈ S và đôi một khác nhau. Theo bài ra ta có
Có .
Ta có các cặp 3 số khác nhau từ S có tổng bằng 9 là .