Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
An Hoà
1 tháng 11 2018 lúc 12:44

a, n + 8 chia hết cho n + 1

=> n + 1 + 7 chia hết cho n + 1

=> 7 chia hết cho n + 1

=> n + 1 \(\in\)Ư ( 7 ) 

Mà Ư(7) = { 1 ; 7 }

+>  n + 1 = 1 => n = 0

+> n + 1 = 7 => n = 6

b, 

2n + 11 chia hết cho n - 3

=> 2n - 6 + 17 chia hết cho n - 3 

=> 17 chia hết cho n - 3

=> n - 3 \(\in\)Ư ( 17 ) 

Mà Ư(17) = { 1 ; 17 }

+>  n - 3 = 1 => n = 4

+> n - 3 = 17 => n = 20

c, 

4n - 3 chia hết cho 2n + 1

=> 4n + 2 - 5 chia hết cho 2n + 1

=> 5 chia hết cho 2n + 1

=> 2n + 1 \(\in\)Ư ( 5 ) 

Mà Ư(5) = { 1 ; 5 }

+>  2n + 1 = 1 => n = 0

+> 2n + 1 = 5 => n = 2

Nguyễn Hương Giang
Xem chi tiết
Vũ Thị Trang
Xem chi tiết
Hoàng Thị Vân Anh
Xem chi tiết
nguyễn thảo my
Xem chi tiết

a,  n + 8 \(⋮\) n + 1

n + 1 + 7 ⋮ n + 1

            7  ⋮ n + 1

n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}

\(\in\) {-8; -2; 0; 6}

Vì n \(\in\)N ⇒ n \(\in\){ 0; 6}

 

b, 2n + 11 \(⋮\) n - 3

    2(n - 3) + 17 ⋮ n -3

                   17 ⋮ n - 3

    n - 3 \(\in\)Ư(17) = {-17; -1; 1; 17}

   n \(\in\) { -14; 2; 4; 20}

    Vì n \(\in\)N ⇒ n \(\in\) {2; 4; 20}

  

c, 4n - 3 \(⋮\) 2n + 1

    2.(2n + 1) - 5 ⋮ 2n + 1

                       5 ⋮ 2n + 1

          2n + 1  \(\in\) Ư(5) = { -5; -1; 1; 5}

           n \(\in\) {-3; -1; 0; 2}

Vì n \(\in\)N ⇒ n \(\in\) {0; 2}

          

Trịnh Minh Huân
Xem chi tiết
nguyen khanh ly
Xem chi tiết
Phương Linh
Xem chi tiết
Nguyễn Đức Trí
7 tháng 8 2023 lúc 9:02

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

Đào Trí Bình
7 tháng 8 2023 lúc 9:15

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

Hà Giang
Xem chi tiết
Trần Quỳnh Mai
27 tháng 10 2016 lúc 16:06

a, \(3n+2⋮n-1\)

\(\Rightarrow3n-3+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

Vì : \(3\left(n-1\right)⋮n-1\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{1;5\right\}\)

+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)

+) \(n-1=5\Rightarrow n=5+1\Rightarrow n=6\)

Vậy : \(n\in\left\{2;6\right\}\) thì \(3n+2⋮n-1\)

b, \(n+8⋮n+3\)

Vì : \(n+3⋮n+3\)

\(\Rightarrow\left(n+8\right)-\left(n+3\right)⋮n+3\)

\(\Rightarrow n+8-n-3⋮n+3\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)\)

Mà : \(n+3\ge3\)

\(\Rightarrow n+3=5\Rightarrow n=5-3\Rightarrow n=2\)

Vậy n = 2 thì : \(n+8⋮n+3\)

c, \(n+6⋮n-1\)

Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+6\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+6-n+1⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\Rightarrow n-1\in\left\{1;7\right\}\)

+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)

+) \(n-1=7\Rightarrow n=7+1\Rightarrow n=8\)

Vậy \(n\in\left\{2;8\right\}\) thì \(n+6⋮n-1\)

d, \(4n-5⋮2n-1\)

\(\Rightarrow4n-2-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

Vì : \(2\left(2n-1\right)⋮2n-1\)

\(\Rightarrow3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(3\right)\)

\(\Rightarrow2n-1\in\left\{1;3\right\}\)

+) \(2n-1=1\Rightarrow2n=1+1\Rightarrow2n=2\Rightarrow n=2\div2\Rightarrow n=1\)

+) \(2n-1=3\Rightarrow2n=3+1\Rightarrow2n=4\Rightarrow n=4\div2\Rightarrow n=2\)

Vậy \(n\in\left\{1;2\right\}\) thì \(4n-5⋮2n-1\)