Tìm n để: 15:( n+2 ). Là phép chia hết.
(7a^b-5a^3+a^2):3a^2 . Tìm n để phép chia sau là phép chia hết
Sửa đề: Tìm b để đây là phép chia hết
Ta có: \(\left(7a^{b}-5a^3+a^2\right):3a^2\)
\(=\frac{7a^{b}}{3a^2}-\frac{5a^3}{3a^2}+\frac{a^2}{3a^2}\)
\(=\frac73\cdot a^{b-2}-\frac53a+\frac13\)
Để đây là phép chia hết thì b-2>=0
=>b>=2
Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
| -9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
| y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
| \(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
Ta có: \(x^2+2x^2+15\) ⋮x+3
=>\(3x^2+15\) ⋮x+3
=>\(3x^2+9x-9x-27+42\) ⋮x+3
=>42⋮x+3
=>x+3∈{1;-1;2;-2;3;-3;6;-6;7;-7;14;-14;21;-21;42;-42}
=>x∈{-2;-4;-1;-5;0;-6;3;-9;4;-10;11;-17;18;-24;39;-45}
Xin giúp mình câu số 7. Tìm n để phép chia sau là phép chia hết (7a^6-5a^3 +a^2)÷3^n
\(A=\dfrac{7a^6-5a^3+a^2}{3a^n}=\dfrac{7}{3}a^{6-n}-\dfrac{5}{3}a^{3-n}+\dfrac{1}{3}\cdot a^{2-n}\)
Để đây là phép chia hết thì 6-n>=0 và 3-n>=0 và 2-n>=0
=>n<=2
=>\(n\in\left\{0;1;2\right\}\)
Tìm n(n∈N) để mỗi phép chia sau đây là phép chia hết x 5 - 2 x 3 - x : 7 x n
Vì x 5 - 2 x 3 - x chia hết cho 7xn nên mỗi hạng tử của đa thức chia hết cho 7 x n
Suy ra: x chia hết cho 7 x n ( trong đó x là hạng tử có số mũ nhỏ nhất).
Nên n ≤ 1
Vì n ∈ N ⇒ n = 0 hoặc n = 1
Vậy n = 0 hoặc n = 1 thì x 5 - 2 x 3 - x : 7 x n
Tìm n(n∈N) để mỗi phép chia sau đây là phép chia hết 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 : 2 x n y n
Vì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 chia hết cho 2 x n y n nên mỗi hạng tử của đa thức đều chia hết cho 2 x n y n
Suy ra: x 2 y 2 chia hết cho 2 x n y n trong đó x 2 y 2 là hạng tử có số mũ nhỏ nhất).
Suy ra: n ≤ 2
Vì n ∈ N ⇒ n = 0; n = 1; n = 2
Vậy với n ∈ {0; 1; 2} thì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 : 2 x n y n
Bài 5.5: Tìm x: (2x-3)(x+1)+(4x\(^3\)-6x\(^2\)-6x):(-2x)=18
Bài 6.1: Tìm số tự nhiên n để: 5x\(^{n-2}\):3x\(^2\)
Bài 6.2: Tìm số tự nhiên n để đa thức x\(^{n-1}\)-3x\(^2\):2x\(^2\)
Bài 6.3: Tìm n ∈ N để phép tính chia sau là phép chia hết:
3x\(^7\)y\(^7\)-4x\(^6\)y\(^6\)-5x\(^3\)y\(^3\):(2x\(^n\)y\(^n\))
Trả lời nhanh giúp mìn nhóe!![]()
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) 5 x 3 - 7 x 2 + x : 3 x n
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) 13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2 : 5 x n y n
Vì đa thức 13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2 chia hết cho 5 x n y n nên mỗi hạng tử của đa thức trên chia hết cho 5 x n y n Do đó, hạng tử 6 x 2 y 2 chia hết cho 5 x n y n ⇒ 0 ≤ n ≤ 2 . Vậy n ∈ {0;1;2}