Tìm GTLN của:A=-x^2-2y^2+2xy+2x-4y+100
tìm gtnn (gtln) của:
a) A= 4x2-4x+10 b) B= 2x2-3x-1
c) C= 4x2+2y2+4xy+4x+6y+1 d) D= (3x-1)2-4(3x-1)x+4x2
e) G= 9x2+2y2+6xy+4y+5 f) H= 2x2+3y2-2xy+4y+2x+5
g) K= xy+yz+zx; biết x+y+z= 3
nhờ mn giúp mik vs nha
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
Tìm GTLN của
A= -x2 +2xy - 4y2 + 2x + 10y +5
B= -x2 - 2y2 -2xy + 2x - 2y -15
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
Tìm gtln B= 100-x^2-y^2-2x-2y-2xy
tim GTLN A =x^2+2y^2+2xy+2x-4y+2013
<=> \(x^2+2x\left(y+1\right)+\left(y+1\right)^2+y^2-6y+9+2004\)
<=>\(\left(x+y+1\right)^2+\left(y-3\right)^2+2004\)
Ta có: \(\hept{\begin{cases}\left(x+y+1\right)^2\ge\\\left(y-3\right)^2\ge0\end{cases}0}\)
=> \(\left(x+y+1\right)^2+\left(y-3\right)^2+2004\ge2004\)
Vậy Max A=2004. Dấu bằng xảy ra <=> \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
Giúp mk nha
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
tìm x:
a) (x-3)(x^2+3x+9)+x(x+2)(2-x)=1
b) (x+1)^3-(x-1)^3-6(x-1)^2=-10
tìm GTLN:
a) A= -x^2+2xy-4y^2+2x+10y+5
b) B= -x^2-2y^2-2xy+2x-2y-15
Tìm GTNN
\(x^2+2y^2+2xy+2x+4y-1.\)
Tìm GTLN
\(-x^2-2x-y^2-8y-10.\)
Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)
\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)
\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)
Chúc bạn học tốt ~
Đặt \(B=-x^2-2x-y^2-8y-10\)
\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)
\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)
\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)
Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)
Chúc bạn học tốt ~