\(A = - x^{2} - 2 y^{2} + 2 x y + 2 x - 4 y + 100\)
Nhóm thành:
\(A = - \left(\right. x^{2} - 2 x y + 2 y^{2} \left.\right) + 2 x - 4 y + 100\)
2. Nhận dạng hằng đẳng thức\(x^{2} - 2 x y + 2 y^{2} = \left(\right. x - y \left.\right)^{2} + y^{2}\)
Suy ra:
\(A = - \left(\right. \left(\right. x - y \left.\right)^{2} + y^{2} \left.\right) + 2 x - 4 y + 100\) \(A = - \left(\right. x - y \left.\right)^{2} - y^{2} + 2 x - 4 y + 100\)
3. Đặt ẩn phụĐặt \(u = x - y \textrm{ }\textrm{ } \Rightarrow \textrm{ }\textrm{ } x = u + y\).
Thay vào:
\(A = - u^{2} - y^{2} + 2 \left(\right. u + y \left.\right) - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u + 2 y - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u - 2 y + 100\)
4. Phân tích theo từng biến\(A \left(\right. u , y \left.\right) = - \left(\right. u^{2} - 2 u \left.\right) - \left(\right. y^{2} + 2 y \left.\right) + 100\) \(= - \left(\right. u^{2} - 2 u + 1 \left.\right) + 1 - \left(\right. y^{2} + 2 y + 1 \left.\right) + 1 + 100\) \(= - \left(\right. u - 1 \left.\right)^{2} - \left(\right. y + 1 \left.\right)^{2} + 102\)
5. Tìm giá trị lớn nhấtVì \(- \left(\right. u - 1 \left.\right)^{2} \leq 0\) và \(- \left(\right. y + 1 \left.\right)^{2} \leq 0\), nên giá trị lớn nhất đạt được khi\(u - 1 = 0 \text{v} \overset{ˋ}{\text{a}} y + 1 = 0\)
Tức là \(u = 1 , y = - 1\).
Khi đó:Amax=102A_{\max} = 102Amax=102
✅ Đáp số:
Amax=102A_{\max} = 102Amax=102
(Đạt được khi \(x = u + y = 1 + \left(\right. - 1 \left.\right) = 0 , \textrm{ }\textrm{ } y = - 1\))