Tìm x thuộc z để : \(\frac{42-x}{x-15}\)có GTNN
1 Tìm x thuộc Z để A=\(\frac{42-x}{x-15}\text{đ}\text{ạt}GTNN\)
Cho M=\(\frac{42-x}{x-15}\).Tìm x thuộc Z để M có giá trị nhỏ nhất
M có giá trị nhỏ nhất= 0 suy ra 42-x=0 vậy x=42
Tìm x thuộc Z để M= \(\dfrac{42-x}{x-15}\) Đạt GTNN
a) Tìm x thuộc Z, để A = 2021-x/21-x đạt GTLN.Tìm GTLN đó
b) Tìm x thuộc Z, để B = 15-x/x-9 đạt GTNN.Tìm GTNN đó
Cho A = \(\frac{x-13}{x+3}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
tìm x thuộc Z để biểu thức :A= 42-x/ x-15 có giá trị lớn nhất
tìm x thuộc Z để biểu thức :A= 42-x/ x-15 có giá trị lớn nhất
Cho A = \(\frac{10x+13}{2x+4}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
cho \(E=\frac{5-x}{x-2}\)
Tìm x thuộc Z để:
a,E thuộc Z
b,E có GTNN