\(\frac{2}{x-3}\le\frac23\)
Giải bpt
\(\frac{1}{x}+\frac{2}{x+2}\le\frac{3}{x+1}\)
giải bpt
\(\frac{1}{x}+\frac{2}{x+2}\le\frac{3}{x+1}\)
giải bpt
giải bpt sau:
\(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
\(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
\(\Leftrightarrow\frac{18x}{6}-\frac{2\left(x+2\right)}{6}\le\frac{9\left(x-2\right)}{6}+\frac{30}{6}-\frac{6x}{6}\)
\(\Rightarrow18x-2x-4\le9x-18+30-6x\)
\(\Leftrightarrow16x-4\le3x+12\)
\(\Leftrightarrow13x\le16\)
\(\Leftrightarrow x\le\frac{16}{13}\)
Vậy bất phương trình có tập nghiệm là: \(S=\left\{x|x\le\frac{16}{13}\right\}\)
Giải bpt sau: \(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
nhân 2 vế với 6
18x - 2x - 4<=9x - 18 + 30 - 6x
16x - 4 <=3x + 12
13x <=16
x<=16/13
Nhân 2 vế với 6
\(\Leftrightarrow18x-2x-4\le9x-18+30-6x\)
\(\Leftrightarrow18x-2x-9x+6x\le-18+30+4\)
\(\Leftrightarrow-13x\le-16\)
\(\Leftrightarrow x\ge\frac{16}{13}\)
Giải BPT
\(2\left|x\right|-1+\sqrt[3]{x-1}\le\frac{2x}{x+1}\)
giải bpt g: \(2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-3\le\frac{2}{\sqrt{x^2+1}}\)
giải hệ bpt
\(\frac{1}{13}\le\frac{x^2-2x-2}{x^2-5x+7}\le1\)
Giải từng bất phương trình bằng cách chuyển vế rồi lập bảng xét dấu là ra nha bạn
Giải BPT
\(\frac{\sqrt{-x^2+x+6}}{2x+5}\le\frac{\sqrt{-x^2+x+6}}{x+4}\)
ĐKXĐ: \(-2\le x\le3\)
Do trên \(\left[-2;3\right]\) cả \(2x+5\) và \(x+4\) đều dương nên BPT tương đương:
\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)
giải bpt
1.\(\frac{1}{x+2}\ge\frac{x+2}{3x-5}\)
2.\(\sqrt{-x^2+4x-3}\le x-1\)
help!
\(\frac{1}{x+2}-\frac{x+2}{3x-5}\ge0\)
\(\Leftrightarrow\frac{-x^2-x-9}{\left(x+2\right)\left(3x-5\right)}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-5\right)< 0\) (do \(-x^2-x-9< 0;\forall x\))
\(\Rightarrow-2< x< \frac{5}{3}\)
2/ ĐKXĐ: \(1\le x\le3\)
\(\Leftrightarrow-x^2+4x-3\le\left(x-1\right)^2\)
\(\Leftrightarrow2x^2-6x+4\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
Kết hợp ĐKXĐ: \(\left[{}\begin{matrix}x=1\\2\le x\le3\end{matrix}\right.\)