Cho \(\Delta ABC,AB=c,AC=b,BC=a.\)
Chứng minh : \(Sin\frac{\widehat{A}}{2}=\frac{a}{b+c}\)
cho ΔABC nhọn, BC = a, AC = b, AB = c. chứng minh rằng
a, diện tích ΔABC = \(\frac{b.c.\sin A}{2}\)
b, \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
các bạn giúp mình với:
cho a, b, c lần lượt là độ dài cạnh BC, AC, AB của tam giác ABC.
a) chứng minh \(\sin\frac{\widehat{A}}{2}\le\frac{a}{2\sqrt{bc}}\)
b) chứng minh \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
c) đường cao AD, BE cắt nhau ở h. chứng minh \(AH.HD\le\frac{BC^2}{4}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(Sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
\(\Delta ABC\) có : BC=a ; AC=b ; AB=c . C/m
a) \(a^2+b^2+c^2\ge4\sqrt{3}S_{\Delta ABC}\)
b) \(\frac{a}{\sin\widehat{A}}=\frac{b}{\sin\widehat{B}}=\frac{c}{\sin\widehat{C}}=2R\) ( R là bán kính đường tròn ngoại tiếp \(\Delta ABC\) )
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(sin\frac{\widehat{A}}{c}\le\frac{a}{b+c}\)
Kẻ phân giác AD, BK vuông góc với AD.
\(\sin\frac{\widehat{A}}{2}=\sin BAD\)
Xét tam giác AKB vuông tại K, ta có:
\(\sin BAD=\frac{BK}{AK}\left(1\right)\)
Xét tam giác BKD vuông tại K, ta có:
\(BK\Leftarrow BD\)thay vào (1)
\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)
Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)
\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)
\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Đố: Cho \(\Delta ABC\), biết \(BC=a,AC=b,AB=c,\widehat{A}=\alpha,\widehat{B}=\beta,\widehat{C}=\gamma\) chứng minh:
a)\(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}\) b) \(a^2=b^2+c^2-2bc\cos\alpha\)
c) \(\frac{a-b}{a+b}=\frac{\tan\left[\frac{1}{2}\left(\alpha-\beta\right)\right]}{\tan\left[\frac{1}{2}\left(\alpha+\beta\right)\right]}\)
d) Biết \(s=\frac{a+b+c}{2}\). Chứng minh \(\frac{\cot\frac{\alpha}{2}}{s-a}=\frac{\cot\frac{\beta}{2}}{s-b}=\frac{\cot\frac{\gamma}{2}}{s-c}\)
Cho tam giác ABC có 3 góc nhọn và BC = a, AC = b, AB = c.
a) Chứng minh rằng \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
b) Gọi AD là phân giác của góc BAC (D thuộc BC) kẻ BI vuông góc AD (I thuộc AD). Chứng minh rằng \(\sin\frac{\widehat{BAC}}{2}\le\frac{a}{b+c}\)
cho \(\Delta\)ABC có 3 góc nhọn AB = c, AC = b, BC = a Chứng minh
a. \(\frac{\sin A}{\sin B}=\frac{a}{b}\)
b.\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) (Vẽ thêm các đường cao)
giúp mình vs mình đang cần gấp!!