cho ΔABC nhọn, BC = a, AC = b, AB = c. chứng minh rằng
a, diện tích ΔABC = \(\frac{b.c.\sin A}{2}\)
b, \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
cho \(\Delta\)ABC có 3 góc nhọn AB = c, AC = b, BC = a Chứng minh
a. \(\frac{\sin A}{\sin B}=\frac{a}{b}\)
b.\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) (Vẽ thêm các đường cao)
giúp mình vs mình đang cần gấp!!
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
Giup minh với ạ huhu!!!
Cho tam giác ABC nhọn có đường phân giác AD. đặt BC=a, AC=b, AB=c, p=\(\frac{a+b+c}{2}\). Chứng minh rằng:
1. 2 AD.c cos\(\frac{BAC}{2}\)=c2+AD2-BD2
2. 2AD.b.cos \(\frac{BAC}{2}\)=b2+AD2-CD2
3. AD=\(\frac{2p\left(p-a\right)}{\left(b+c\right)cos\frac{BAC}{2}}\)
4.AD=\(\frac{2\sqrt{bcb\left(p-a\right)}}{b+c}\)
Cho tam giác ABC; AB = c; AC = b; BC = a; đường phân giác AD. Chứng minh:
1) \(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\)
2) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{S}< 2\)
3) \(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\ge6\)
4) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le\dfrac{1}{8}\)
5) \(\dfrac{1}{\sin^2\dfrac{A}{2}}+\dfrac{1}{\sin^2\dfrac{B}{2}}+\dfrac{1}{\sin^2\dfrac{C}{2}}\ge12\)
Cho tam giác ABC vuông tại A có AB = c, AC = b, đường phân giác trong AD = d. Gọi E, F là hình chiếu của D trên AB và AC
a) Tính chu vi và diện tích tứ giác AEDF
b) Chứng minh: (√2) / d = 1 / b + 1 / c
c) Chứng minh: 1/ sin (A/2) + 1 / sin (B/2) + 1 / sin (C/2) > 6
Cho tam giác ABC có 3 góc nhọn, \(AB=c,AC=b,BC=a\)
Chứng minh: \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
Dạ mong được mọi người giúp bài dưới ạ:
1. Cho Δ ABC cân tại A và ∠ A < 90o . Kẻ đường cao AH. Chứng minh rằng:
sin ∠ BAC = 2sin ∠ HAC. cot ∠ HAC
2. Cho Δ ABC nhọn. Chứng minh rằng:
a) BC = AB. cos ∠ B + AC . cos ∠ C
b) cos2 ∠ A + cos2 ∠ B + cos2 ∠ C ≥ \(\frac{3}{4}\)
Mọi người cho em xin thêm mấy bài dạng này với ah, em cảm ơn ạ
Cho tam giác có 3 cạnh có độ dài là a, b, c.
Chứng minh rằng: a) \(\sin\dfrac{a}{2}\le\dfrac{a}{\sqrt{bc}}\)
b) \(\sin\dfrac{a}{2}\cdot\sin\dfrac{b}{2}\cdot\sin\dfrac{c}{2}\le\dfrac{1}{8}\)
c) \(\sin\dfrac{a}{2}\cdot\sin\dfrac{b}{2}\cdot\sin\dfrac{c}{2}=\dfrac{1}{8}\) khi tam giác đã cho là tam giác đều.