https://olm.vn/hoi-dap/question/1095832.html
Câu hỏi của em đã được trả lời tại đây nhé.
https://olm.vn/hoi-dap/question/1095832.html
Câu hỏi của em đã được trả lời tại đây nhé.
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(Sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(sin\frac{\widehat{A}}{c}\le\frac{a}{b+c}\)
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Đố: Cho \(\Delta ABC\), biết \(BC=a,AC=b,AB=c,\widehat{A}=\alpha,\widehat{B}=\beta,\widehat{C}=\gamma\) chứng minh:
a)\(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}\) b) \(a^2=b^2+c^2-2bc\cos\alpha\)
c) \(\frac{a-b}{a+b}=\frac{\tan\left[\frac{1}{2}\left(\alpha-\beta\right)\right]}{\tan\left[\frac{1}{2}\left(\alpha+\beta\right)\right]}\)
d) Biết \(s=\frac{a+b+c}{2}\). Chứng minh \(\frac{\cot\frac{\alpha}{2}}{s-a}=\frac{\cot\frac{\beta}{2}}{s-b}=\frac{\cot\frac{\gamma}{2}}{s-c}\)
Cho tam giác ABC nhọn với AB = c , AC = b , BC = a . Chứng minh :
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
cho tam giác ABC nhọn, BC=a, AC=b, AB=c
chứng minh:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác ABC, AB = c, AC = b, BC = a và b + c = 2a. C/m:
a) \(2\sin\widehat{A}=\sin\widehat{B}+\sin\widehat{C}\)
b) \(\frac{2}{h\widehat{A}}=\frac{1}{h\widehat{B}}+\frac{1}{h\widehat{C}}\)( hA, hB, hC lần lượt là các đường cao kẻ từ các đỉnh A, B, C )
Cho tam giác ABC , BC=a ,AC=b, AB=c. Cmr sin \(\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC nhọn có BC=a, AC=b, AB=c
Chứng minh
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)