Chứng minh rằng : ( 7^0+7^1+7^2+7^3.....+ 7^2010+7^2011)chia hết cho 8
Chứng minh rằng:
(7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011) chia hết cho 8
Ta có:\(7^0+7^1+7^2+...+7^{2011}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{2010}+7^{2011}\right)\)
\(=8+8.49+...+8.7^{2010}\)
\(=8\left(1+49+..+7^{2010}\right)⋮8\)
Vậy \(7^0+7^1+7^2+...+7^{2010}+7^{2011}⋮8\)
= 7 mũ ko . 1 + 7 mũ 0 .7 ( tách 7 mũ 1 ) +.........+ 7 mũ 2010 .1 + 7 mũ 2010 . 7
= 7 mũ ko . ( 1+7 ) + 7 mũ 2 . ( 1 + 7 ) + ..... + 7 mũ 2010 . ( 1+ 7 )
= 7 mũ ko . 8 + 7 mũ 2 . 8 + .... + 7 mũ 2010 . 8
= ( 7 mũ 0 + 7 mũ 2 + 7 mũ 4 + .... + 7 mũ 2008 + 7 mũ 2010 ) . 8 .... chia hết cho 8
=> ( 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + ..... 7 mũ 2010 + 7 mũ 2011 ) chia hết cho 8
Có
7 mũ 0 +7 mũ 1 + 7 mũ 2 + ....... +7 mũ 2010 +7 mũ 2011
Chia hết cho 8 các bn nhé
bài 1 : chứng minh : 70+71+72+73+...+72010+72011 chia hết cho 8
Bài 8: Chứng tỏ rằng:
a) 7^0 + 7^1 + 7^2 + 7^3 + ....... + 7^2010 + 7^2011 chia hết cho 8
Giup mình bài này với!
\(7^0+7^1+7^2+7^3+....+7^{2010}+7^{2011}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+....+\left(7^{2010}+7^{2011}\right)\)
\(=\left(1+7\right)+7^2\left(1+7\right)+....+7^{2010}\left(1+7\right)\)
\(=8+7^2.8+....+7^{2010}.8\)
\(=8\left(1+7^2+....+7^{2010}\right)⋮8\left(dpcm\right)\)
chứng minh rằng:
(70+71+72+73+.....+72012+72011) chia hết cho 8
Gọi tổng trên là T (tượng trưng cho tth :v)
Ta có: \(T=\left(7^0+7^1\right)+\left(7^2+7^3\right)+...+\left(7^{2011}+7^{2012}\right)\)
\(=1\left(7^0+7^1\right)+7^2\left(7^0+7^1\right)+...+7^{2011}\left(7^0+7^1\right)\)
\(=8\left(1+7^2+...+7^{2011}\right)⋮8^{\left(đpcm\right)}\)
72010 thôi nhé chứ ko phải 72012 đâu sorry
Bài 1: Tìm x :
a) \(7^{2x+3}.7^{5-2x}:7^7+7^x=1\)
Bài 2: Chứng minh rằng
M = \(1+2010+2010^2+...+2010^7\)CHIA HẾT CHO 2011
Bài 1 :
72x+3 . 75-2x : 7x + 7x = 1
- > 7(2x+3)+(5-2x)-7 + 7x = 1
- > 71 + 7x = 1
- > 7x = 1 - 7 = -6 - > x thuộc rỗng
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
Bài 1 Chứng minh A= 2^1+2^2+2^3+2^4+...2^2010 chia hết cho 3 và 7
b) Chứng minh B= 3^1+3^2+3^3+3^4+...+2^2010 chia hết cho 4 và 13
c) chứng minh C=5^1+5^2+5^3+5^4+...+5^2010 chia hết cho 6 và 31
d) chứng minh D= 7^1+7^2+7^3+7^4+...+7^2010 chia hết cho 8 và 57
Bài 2
a) A= 2^0+2^1+2^2+2^3+...+2^2010 và B=2^2011-1
b) A=2009*2011 và B=2010^2
c) A= 10^30 và B=2^100
d) A= 333^444 và B= 444^333
e) A=3^450 và B= 5^300
f) 5^36 và 11^24 ; 625^5 và 125^7 ; 3^2n và 2^3n (n thuộc N*) ; 5623 và 6*5^22
g) 7*2^13 và 2^16 ; 21^15 và 27^5*49^8 ; 199^20 và 2003^15 ; 3^39 và 11^21
câu 2 là so sánh nhé các bn các bn giúp mk nhé
Cho S=72013 -72012 +72011-72010 +...-72 +71. Chứng Minh Rằng S cHIA hẾT cHO 3
- Chứng minh : C = 5^1 + 5^2 + 5^3 + 5^4 + ... + 5^2010 chia hết cho 6 và 31 - Chứng minh : D = 7^1 + 7^2 + 7^3 + 7^4 + ... + 7^2010 chia hết cho 8 và 57
+) C=5+52+53+54+....+52010
<=> C=(5+52)+(53+54)+.....+(52009+52010)
<=> C=5(1+5)+53(1+5)+....+52009(1+5)
<=> C=5 x 6 +53 x 6+....+52009 x 6
<=> C=6(5+53+....+52009)
=> C chia hết cho 6 (đpcm)
+) C=5+52+53+54+....+52010
<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)
<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)
<=> C=5 x 31+54x31 +....+52008 x 31
<=> C=31(5+54+....+52008)
=> C chia hết cho 31 (đpcm)
+) D=7+72+73+74+....+72010
<=> D=(7+72)+(73+74)+....+(72009+72010)
<=> D=7(1+7)+73(1+7)+....+72009(1+7)
<=> D=7 x 8 +73 x 8 +....+72009 x 8
<=> D=8(7+73+....+72009)
+) D=7+72+73+74+....+72010
<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)
<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)
<=> D=7 x 57 +74 x 57+....+72008 x 57
<=> D=57(7+74+...+72008)
=> D chia hết cho 57 (đpcm)