chứng minh rằng
a)ƯCLN(4n+1,5n+1)=1 ; b)ƯCLN(2n+1,2n+3)=1
c)n.(n+5) chia hết cho 2 với mọi n thuộc N ; (n+3).(n+7).(n+8) chia hết cho 3 với mọi n thuộc N
Chứng minh.....ƯCLN(4n+1,5n+1)=1
ai biết xin trả lời ghúp mình mình cần gấp HSG
Gọi \(\left(4n+1,5n+1\right)=d\left(d\inℕ^∗\right)\)
Ta có \(4n+1⋮d\Rightarrow20n+5⋮d\)
\(5n+1⋮d\Rightarrow20n+4⋮d\)
Suy ra : \(20n+5-20n+4⋮d\Rightarrow1⋮d\)hay \(d=1\)
Vậy \(ƯCLN\left(4n+1;5n+1\right)=1\)
1. Chứng minh rằng
a) ƯCLN(n, n + 1) = 1
b) ƯCLN (2n + 1, 2n +3)= 1
c) ƯCLN(2n+5, 3n+7) = 1
Cho a + 5b 7. Chứng minh rằng 10a + b 7 (a,b )
giúp mk vớiiiiiiiiiii
nhớ giải ra ko lm tắt nhaaaaaaaaaaaaa
thanks very muck
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Bài 9 chứng tỏ rằng
@ UCLN ( 4n + 1,5n + 1)=1
Gọi d là ước chung lớn nhất của 4n + 1 và 5n + 1.
Suy ra \(\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}5\left(4n+1\right)⋮d\\4\left(5n+1\right)⋮d\end{cases}}}\).
Suy ra \(5\left(4n+1\right)-4\left(5n+1\right)⋮d\Leftrightarrow1⋮d\).
Vậy d = 1.
Đề học sinh giỏi cho các bồ nha
Bài 1: 1) Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
2) Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
3) Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
4) Chứng minh rằng: 3n + 1 và 4n + 1 (n N) là 2 nguyên tố cùng nhau.
5) Biết rằng 4n + 3 và 5n + 2 là hai số không nguyên tố cùng nhau. Tìm ƯCLN (4n + 3, 5n + 2)
mk cx hok bồi nek
sao thấy đề bồi này nó cứ dễ sao ấy
Chứng minh rằng :
a) ƯCLN(4n+1, 5n +1) = 1
b)ƯCLN(2n+1,2n+3) = 1
c)n.(n+5) chia hết cho 2 với n thuộc N
d)(n+3).(n+7).(n+8) chia hết cho 3 với n thuộc N
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
Cho:A=1/31+1/32+1/33+..............+1/60
Chứng minh rằngA>7/12
\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
=>đpcm
l-i-k-e cho mình nha
A=1-1/2+1/3-1/4+1/5-1/6+....+1/49-1/50. Chứng minh rằngA<5/6
CHứng minh rằng
A= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy ta có đpcm
cho góc nhọn α tuỳ chọn chứng minh rằng
a) 1+\(\tan^2\) α=1\(\dfrac{1}{\cos^2}\) α
VT `=1+tan^2 α`
`=1+ (sin^2α)/(cos^2α)`
`= (cos^2α+sin^2α)/(cos^2α)`
`= 1/(cos^2α)`
a, \(1+tan^2a=\dfrac{1}{\cos^2a}\)
ĐT \(\Leftrightarrow\cos^2a\left(1+\tan^2a\right)=1\)
\(\Leftrightarrow\cos^2a+\cos^2a.\tan^2a=1\)
\(\Leftrightarrow\cos^2a.\dfrac{\sin^2a}{\cos^2a}+\cos^2a=\sin^2a+\cos^2a=1\) ( ĐT đã có )
=> ĐPCM
Vậy ...